Award Number: DAMD17-01-1-0513

TITLE: Signal Detection Theory-Based Information Processing for
the Detection of Breast Cancer at Microwave Frequencies

PRINCIPAL INVESTIGATOR: Loren W. Nolte, Ph.D.

CONTRACTING ORGANIZATION: Duke University
Durham, North Carolina 27708-0077

REPORT DATE: August 2003
TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.




REPORT DOCUMENTATION PAGE oM No a7 o188

[ Public reporting burden for this collection of information is estimated to average 1 hour per resp g the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and compieting and reviewing this collection of information. Send comments regaming this burden estimate or any other aspect of this collection of inforrmation, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Mana and Budget, Paj Reduction 0704-0188), Washington, DC 20503

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

{Leave blank) August 2003 Final (1 Aug 2001 - 31 Jul 2003)
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Signal Detection Theory-Based Information Processing for DAMD17-01-1-0513

the Detection of Breast Cancer at Microwave Frequencies

6. AUTHOR(S)
Loren W. Nolte, Ph.D,

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES} 8. PERFORMING ORGANIZATION
Duke University REPORT NUMBER

Durham, North Carolina 27708-0077

E-Mail: lwn@ee.duke.edu

8. SPONSORING / MONITORING 70. SPONSORING / MONITORING
AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

3

71. SUPPLEMENTARY NOTES

72a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release; Distribution Unlimited

73. ABSTRACT (Maximum 200 Words)

This research addressed directly the decision-theoretic task of detection and localization
of breast tumor, using microwave diffraction measurements. Microwave energy has the
advantages that at low power levels there are no radiation dangers, no contrast agents,
and the examinations are comfortable. Although there is considerable scattering of a
microwave signal in tissue, the presence, location, and nature of tumors is “coded” in the
combination of amplitude and phases in the signals received at multiple sensors. Bayesian
detection theory was used in this research to improve the probability of correct detection
and localization. This improvement in performance is possible because conventional imaging
techniques, by themselves, usually emphasize resolution and contrast, and leave the
incorporation of uncertainties and decisions primarily to algorithms or human observers
that post process the reconstructed image. This approach augments conventional medical
image processing and provides additional processing of he scattered microwave field to aid
the radiologist in dealing with uncertainties that are an inherent part of the decisions. .
Using the receiver operating characteristic (ROC) and other performance measures, and
simulation, bounds on the performance attainable for various uncertainties in malignant
tissue properties (permittivity), sizes, location, and signal-to-noise ratios were
obtained.

"14. SUBJECT TERMS 15. NUMBER OF PAGES
Breast cancer, signal detection, microwave imaging : 49
16. PRICE CODE
77. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified - Unclassified Unlimited
NSN 7540-01-280-5500 v Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298102




Table of Contents

0443V RO 1
] i T RO 2
Table of Contents.......cicoiiieiiiiiiiii e 3
INtroducCtion........cccoiiiiimiiii e e 4
T T | 4
Key Research Accomplishments...........cccooiiiiiiiiiiiiniicnninnnnn e e, 5
Reportable Qutcomes.........cccovirimiiniiiiirci s e 6
L0307 s Tod {11 o o = U 6
References....ccciciiciiiiiiiii i e 7
Bibliography of Publications...........cccccciviiiiiiiiiiiiis e 8
List of Personnel Receiving Pay from Research Effort..............cccceununeis 8

2N o 7= Lo [ o == 9




Introduction

Microwave energy has the advantages that at low power levels there are no radiation
dangers, no contrast agents, and the examinations are comfortable. This research
addresses directly the decision-theoretic task of detection and localization of breast
tumor, using microwave diffraction measurements. Bayesian detection theory is used to
improve the probability of correct detection and localization. This improvement in
performance is possible because conventional imaging techniques, by themselves, usually
emphasize resolution and contrast, and leave the incorporation of uncertainties and
decisions primarily to algorithms or human observers that post process the reconstructed
image. This approach augments conventional medical image processing and provides
additional processing of the scattered microwave field to aid the radiologist in dealing
with uncertainties that are an inherent part of the decisions.

Sha et al have compiled results from experiments in the literature that show that the
microwave dielectric properties of malignant tissue are different from those of normal
breast tissue. Signal detection theory, in its most fundamental form, provides a
framework for incorporating this knowledge of breast tissue characteristics directly into
the design of optimal task oriented information processing algorithms to aid in the
detection of breast cancer. In addition, signal detection theory enables one to obtain upper
limits of detection and localization performance as a function of uncertainties in the
microwave properties of breast tissues, using quantitative measures such as the ROC
(probability of detection vs. false alarm) and PCL (probability of correct localization).
The proposed algorithm uses the direct microwave diffraction measurements and
incorporates the fact that spatially adjacent tissues are similar in their permittivity values,
but normal and malignant breast tissues have high contrast in the mean. These research
results demonstrate the advantages of incorporating the microwave diffraction
measurements directly into the computer-aided algorithm design.

Body

Detailed descriptions of the research done on this project during this reporting period are
summarized below in References [1-4]. Copies of the conference papers and posters
cited [1-4] are included in the appendix of this report.

Background -- Most of the past research in this field has focused on the study of the
dielectric properties, the design of the microwave imaging prototypes, and the
improvement of the EM forward and inverse algorithms. However, none of this research
has incorporated signal detection theory directly into the microwave imaging at the
measurement level. Markov Random Fields (MRF) and detection theory have been
applied in mammography for diagnosis. However these only assumed a simple
deterministic disk object model or did not utilize the a priori knowledge of the
projections. This research presents Bayesian algorithms for Scattered Electromagnetic
fields through an Uncertain Permittivity Image which incorporates the knowledge of the
a prior permittivity image modeled by the MRF, the measurement noise, as well as the
physical model of the forward scattered electric field. The Bayesian algorithms for the
Uncertain Permittivity Image and the Threshold Image Processors are also presented for




comparisons. Our approach exploits the propagation of the scattered microwave fields to
develop better diagnostic decision aids. Additional references to this background
information are contained in Ref. 3

On this concept research award, Sha, the graduate student on this project, with the help of
two other students, has compiled results from experiments in the literature that show that
the microwave dielectric properties of malignant tissue is different from that of normal
breast tissue [2]. Hence microwave imaging has the potential of providing a tool for
improving the diagnosis of breast cancer with no known radiation dangers [2].

Although the experimental literature has provided promising evidence that the dielectric
properties of malignant and benign tissue are different, this project investigated the
impact of this on the ability to detect and localize tumors. Since tissue properties change
spatially, statistical models were developed on this project that model simple
uncertainties in the tissue permittivity within the framework of microwave imaging|3, 4].
The Markov Random Field was used to model the breast permittivity cross section as a
propagating medium, and this was incorporated into the forward Electromagnetic (EM)
propagation model [1], to predict the random field of the EM measurements at a received
array of sensors. These statistical models of tissue permittivity were then incorporated
into an optimal signal detection theory framework in which task-oriented goals such as
detection and localization of a tumor drive the information processing [3, 4]. Using
Bayesian signal detection theory, the likelihood ratio for tumor detection and the a
posteriori probability of tumor location were computed and displayed. The ROC
(receiver operating characteristics) was used as a quantitative performance measure.
These results provide an upper bound on the task-driven goal, namely the detection of the
presence or absence of a tumor as a function of tumor permittivity contrast, size, noise,
and local spatial permittivity uncertainties that characterize the tissue in microwave
imaging [3, 4]. In addition, the probability of correct localization (PCL) was obtained as
a quantitative measure of how well one can determine the location of a tumor, as a
function of tumor contrast, size, and spatial tissue properties [3,4].

Details of this research supported by this project are presented in the conference papers
and poster sessions, references [1-3], with copies of drafts of these references [1-3]
included in the appendix.

Key Research Accomplishments

e Experimental results were compiled from the literature. Those results show that the
dielectric properties of malignant and normal breast tissue at microwave frequencies
are different. This compilation was led by Liewei Sha, a graduate student on this
project, and the results are published in Reference [2], Liewei Sha, Erika Ward , and
Brandon Story ,"A review of dielectric properties of normal and malignant breast
tissue," Proceedings of the IEEE SoutheastCon 2002, pp. 457 -462, Columbia, South
Carolina, April 5 - 7, 2002.




e Developed Markov Random field statistical models that characterize the
uncertainties in the spatial properties of tissue permittivity at microwave frequencies.
Incorporated this information into the forward Electromagnetic (EM) propagation to
predict the random field of the EM measurements at a received array of sensors [3,4].

e Used an optimal signal detection theory framework in which task-oriented goals such
as detection and localization of a tumor drive the information processing. Bayesian
approaches were developed to compute the likelihood ratio for tumor detection and
the a posteriori probability display of tumor location. [3,4]

e Although the permittivity between malignant and benign tissue has been reported in
the experimental literature to be different, the question is how does this translate to
ones ability to detect malignant tissue. Using the optimum signal detection and
localization information processing algorithms derived above, ROC’s were obtained
to provide an upper bound on the detection of the presence or absence of a tumor.
Results were obtained as a function of tumor permittivity contrast between malignant
and normal tissue, size, noise, and local spatial permittivity uncertainties that
characterize the tissue at microwave frequencies. [3,4]

e The probability of correct localization, PCL, was also obtained as a quantitative
measure of how well one can determine the location of a tumor, as a function of
tumor contrast, size, tissue spatial permittivity characteristics, and noise. [3,4]

Reportable Outcomes

Liewei Sha, Erika Ward , and Brandon Story ,"A review of dielectric properties of
normal and malignant breast tissue," Proceedings of the IEEE SoutheastCon 2002, pp.
457 -462, Columbia, South Carolina, April 5 - 7, 2002.

Liewei Sha, Loren W. Nolte, Zhong Qing Zhang and Qing H. Liu, "Performance analysis
for Bayesian microwave imaging in decision aided breast tumor diagnosis,” Proceedings
of the 2002 IEEE International Symposium on Biomedical Imaging Washington D.C,,
pp. 1039-1042, Washington, DC, July7-10, 2002.

Liewei Sha, Loren W. Nolte, Zhong Qing Zhang and Qing Huo Liu, "Decision
Aided Algorithms for Breast Tumor Diagnosis Using Microwave Diffraction
Measurements," Poster, Era of Hope 2002 Department of Defense Breast Cancer
Research Meeting, Orlando, Florida, September 25-28, 2002.

Conclusions

Decision-aided breast tumor diagnostic algorithms based on signal detection theory and
microwave energy, which has no radiation danger at low power levels, have the potential
of providing additional information for radiologist so as to improve the probability of




early detection of breast tumors as well as their correct locations. This Bayesian
microwave imaging approach is driven by the ultimate decision tasks of whether or not a
tumor is present, and if so where is it. It benefits from incorporating the a priori
knowledge, although uncertain, of the permittivity properties of normal and malignant
breast tissue. This approach also gains a decision performance advantage by processing
the measurements directly using signal detection theory, rather than post processing a
reconstructed image where some of the information needed for the decision has been lost.
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. Active Microwave Imaging I—2-D Forward and
Inverse Scattering Methods
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Abstract—Active microwave imaging (MW1) for the detection
of breast tumors is an emerging technique to complement existing
X-ray mammography. The potential advantages of MWI arise
mainly from the high contrast of electrical properties between
tumors and normal breast tissue. However, this high contrast also
increases the difficulty of forming an accurate image because of
increased multiple scattering. To address this issue, we develop fast
forward methods based on the combination of the extended Born
approximation, conjugate- and biconjugate-gradient methods,
and the fast Fourier transform. We propose two nonlinear MWI1
algorithms to improve the resolution for the high-contrast media
encountered in microwave breast-tumor detection. Numerical
resalts show that our algorithms can accurately model and invert
for the high-contrast media in breast tissne. The outcome of the
inversion algorithms is a high-resolution digital image containing
the physical properties of the tissae and potential tumors.

Index Terms—Biomedical applications, fast algorithms,
imaging, inverse scattering, microwave techniques.

1. INTRODUCTION

ARLY treatment of breast cancer can be highly effec-

tive and can significantly increases long-term survival
{1]. Among current clinical and experimental breast-cancer
imaging technologies (see, e.g., [2]), the most popular method
for breast cancer screening and diagnosis is based on X-ray
mammography. In spite of its high resolution, however, X-ray
mammography has the following shortcomings [3], [4].

1) It has difficulties detecting breast tumors at their earlier
stages.

2) It has a decreased effectiveness in cases of women with
dense breasts and has difficulties detecting tumors located
near the chest wall or underarm.

3) It has a limited specificity between benign and malignant
tissue resulting in high false-alarm rates at clinically ac-
cepted detection rates.

4) It uses ionizing radiation.

5) There is a discomfort to patients because of breast com-
pression.
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As an alternative and complementary modality for breast
imaging, microwave (MW) techniques have been proposed
over the last few years [5]-{8] because of its potentially high
specificity for breast cancer diagnosis due to the high contrast
in electrical properties between normal and malignant human
breast tissues.

Due to significantly different sodium concentrations, fluid
contents, and electrochemical properties, a significant contrast
exists in electrical properties at MW frequencies between
the normal and malignant human breast tissues [9]-{13]. For
example, at 800 MHz, the relative permittivity (e) and elec-
trical conductivity (o) for normal mammary tissues are around
¢, ~16 and o ~0.16 S/m, respectively, while they are ¢, ~57.2
and ¢ ~1.08 S/m, respectively, for a malignant breast tumor.
The contrast is 3.75 for the relative permittivity and 6.75 for the
electrical conductivity. This high contrast gives rise to a large
electromagnetic scattering signal when electromagnetic waves
are applied to a malignant tumor embedded in a normal tissue.

Compared to X-ray mammography, MW mammography has
the following potential advantages.

1) The high contrast in electrical properties can potentially
provide a high specificity to distinguish between normal
and malignant breast tissues. MW mammography may be
able to detect, at an earlier stage, small tumors otherwise
undetectable by X-ray mammography.

2) Microwave imaging (MWI) utilizes nonionizing radia-
tion for breast cancer imaging. The MW radiation levels
required are well within accepted safety standards, and
there are no contrast agents involved.

3) The examinations using MWs are well tolerated since no
breast compression is required for the patient. The MWI
method provides a useful alternative and complement to
the diagnostic information provided by X-ray mammog-
raphy.

During the last decade, there has been significant progress
in the development of experimental prototypes of two-dimen-
sional (2-D) and three-dimensional (3-D) MWI systems based
on various ideas [5}-{7], [14], [15]. These systems image 2-D
(and more recently, 3-D) small- and medium-size objects, and
sometimes even the full body [16]-[18]. Substantial research
has also been carried out specifically for breast cancer diag-
nosis with narrow-band [14] and wide-band [5], [6] signals. A
recent report, apparently the first clinical experiments, shows
very promising results for MW breast imaging [7].

From the practical viewpoint, one of the most significant
problems for current MWI systems is their lower spatial
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Fig. 1. Typical geometry for forward and inverse problems in MW breast
imaging. Transmitting and receiving antennas are mounted on the rim of a
fluid-holding box with an absorptive backing.

resolution. There has been great interest in inverse problems
for biomedical applications of MWs to improve the resolution
[191, [22], [23], [20], [21]. Unlike X-ray imaging techniques,
which only need to consider the attenuation of the X-ray, for
MWTI technology, we need to consider multiple scattering (i.e.,
diffraction) of MWs within the tissues. This is a significant
effect and cannot be neglected [18]. From this viewpoint,
the very advantage of high contrast in electrical properties
between normal and malignant tissues can also pose a major
limitation if not treated correctly. This is because the high
contrast introduces large multiple scattering effects, leading to
a low resolution if linear or quasi-linear methods are used to
invert for the object properties.

In this paper, we develop fast-forward and inverse-scattering
algorithms to fully unravel multiple scattering effects. These al-
gorithms are applied to form high-resolution images for an ex-
perimental prototype of a MW breast-imaging system recently
developed at Duke University, Durham, NC. Our imaging tech-
nique uses the fast Fourier transform (FFT), the extended Born
approximation (EBA), conjugate and biconjugate gradients, and
contrast source-inversion (CSI) methods.

This paper is organized as follows. We briefly present the in-
tegral equation for the 2-D TM problem in Section II. The for-
ward and inverse solution methods are presented in Sections III
and IV. Numerical results are shown in Section V to demonstrate
the efficacy of the technique. Conclusions are presented in Sec-
tion VL.

II. INTEGRAL EQUATION

In this paper, we focus on 2-D MWI problems. We assume a
TM,, wave from a finite source impinging on an inhomogeneous
medium with a high contrast in both dielectric constant and con-
ductivity with respect to a homogeneous background medium.
In MW breast imaging, a matching material with a nonreflec-
tive backing is usually used to eliminate the reflections at the
tissue/air interface, as illustrated in Fig. 1. In that case, the back-
ground medium is the matching fluid with properties similar to
a normal breast tissue.

Fig. 1 illustrates the general scenario of the problem, where
an inhomogeneous object with dielectric constant e,.(r), con-
ductivity o(r), and a constant magnetic permeability xp is im-

mersed in a background medium with the corresponding pa-
rameters €4, 03, and pp. With an implied time dependence of
exp(jwt), the complex permittivity for the object and back-
ground can be written as € = €g€r — jojw and € = €g€rp —
joy/w. In the 2-D TM;, case, all field and source variables are
only functions of r = (z,¥). For an electric current source
J = #J.(r) in such an inhomogeneous medium, the electric
field E = 2E,(r) satisfies the integral equation

E.(r) = E=*()+ / ar'g(r—r) [() K] E.(r) ()
D

where the complex wavenumbers k and ky are defined
by B2 = wlme and ki = w?pses, respectively, and
glr—r) = (1/4j)H((,2) (ks|r — 1’|} is the Green’s function
for a homogeneous background medium. The incident field
Ei®< in (1) is the field in the background medium, i.e., in the
absence of the scatterer (or k = k).

Equation (1) is the central equation we use in this paper for
both the forward and inverse solutions. In the forward problem,
both the medium properties and the domain of inhomogeneity
D are known; our aim is to solve (1) to obtain the electric field.
In the inverse problem, the electromagnetic fields are measured
at some discrete points, usually outside the domain of inhomo-
geneity; the medium properties (including the domain of inho-
mogeneity) are unknowns to be determined. However, we as-
sume that the scatterer is finite and, thus, can always be enclosed
in a large rectangular region D.

A. Historical Note

There is a large body of literatures dealing with both the for-
ward and inverse solutions for integral equations similar to (1).
Tt is not our purpose to present a thorough review of these works.
Here, we will briefly summarize the developments leading to the
methods used in this study.

In the context of low-frequency electromagnetic induction
applications, the forward and inverse problems were solved
with the EBA in [25]-{27]. An FFT accelerated EBA method
was developed as fast-forward and inverse solvers in [28], and
has been used as a preconditioner for the conjugate-gradient
fast Fourier transform (CG-FFT) method in [29], [30], and
[45). However, the application in MWT involves significantly
different physics than in our previous low-frequency problems
where the wave fields are diffusive because of the dominant
conduction current. The dominant wave phenomenon in the
MWI application makes both the forward and inverse problems
more challenging. The biconjugate-gradient fast Fourier trans-
form (BCG-FFT) method used in this paper is an application
of our recent method presented in [49].

I1I. FORWARD-SOLUTION METHODS

There are two purposes for the forward solution. First, it will
be used to simulate and calibrate the imaging system. Secondly,
it will be used to test the inverse algorithms by providing the
simulated “measured” data. Furthermore, other inverse algo-
rithms (unlike those in this paper) may require repeated forward
solutions.
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In the forward problem, the unknown electric field E. ap-
pears both on the left-hand side and inside the integrand of (1).
The conventional way of solving (1) is the method of moments
(MOM), which discretizes the integral equation with N electric
field unknowns in terms of basis functions inside D, and solves
the resulting matrix equation by direct matrix inversion. Unfor-
tunately, this direct method is prohibitively expensive, costing
O(N®) CPU time and O(N?) computer memory.

A. EBA

An efficient way to solve (1) is to use the Born approximation
[24], i.e., to assume that the electric field inside the integrand in
(1) can be approximated by the incident field E*°. The total
field can then be easily calculated by performing the integral of
the Green’s function operating on the Born approximated cur-
rent density.

The Born approximation has a very limited range of validity
when the contrast and/or the size of the scatterer is small
[25}-{27]. To increase the range of validity, one can use the
EBA put forward in [25]. In essence, the EBA makes use of
the fact that the Green’s function g (r — r') is highly peaked
(in fact, singular) when r — ', and becomes relatively small
for larger |r — r'|. Hence, one can replace E. (r') inside the
integrand in (1) with E,(r) and approximate (1) by

E2() ~ B+ B [ ara(e—x)x(¥),  reD

D

¢
where x = (k?/k} — 1} is the contrast function. Consequently,
the electric field in the integrand of (1) can be more accurately
approximated by the solution of (2) when this approximated
field E? from (2) is substituted into the integrand of (1) to yield

E"™(r)
= E™°(r) + k¢ / dr'g(r — r')x(r') M~ () EX<(r')

D

3
where

ME)=1-k} /dr'g(r -r)x(r), reD. @
b

It has been shown that the EBA has a significantly larger
range of applicability than the Born approximation [25], [26],
[28], [29], [30]. Furthermore, the computational cost for (3)
remains essentially the same as the Bomn approximation, i.e.,
O(M;N) arithmetic operations, where My is the number of
field points. However, (4) requires O(N?) arithmetic operations
since M(r) is needed for all N points within the object. Thus,
the total cost of the EBA is O(C1M;N + C2N?), where Ci
and C, are constants. This is still much more efficient than the
direct MOM with O(N'®) arithmetic operations.

B. Using FFT to Speed up the EBA: FFT-EBA Method

We adopt an efficient method for the electromagpetic induc-
tion problem [28]-[30] to speed up the EBA computation of the
electric field at N points within the scatterer. This method is

based on the observation that the integrals in (3) and (4) are con-
volutional. Hence, by using the convolution theorem, one can
solve for the electric field within the EBA approach as

E{O)(r)
= Em(x) +BFH{ Flo@) F [xmM ) ER(0)] }
= £ [E] )

where F and F~! stand for the 2-D forward and inverse
Fourier transforms, respectively, which, in their discrete forms
with zero-padded arrays, can be achieved efficiently through
the FFT algorithms with O(N log, N') arithmetic operations.
Equation (5) also defines the operator Lgs.

This improvement reduces the computational cost of the
EBA from O(N?) to O(N log, N). Furthermore, it makes pos-
sible the following hybridization of the EBA with the CG-FFT
and BCG-FFT methods without increasing the overall cost to
O(N?). For the convenience of the following discussions, we
refer to this improved approach as the FFT-EBA method.

C. EBA as a Preconditioner for CG-FFT and BCG-FFT
Methods

Although the EBA is more accurate than the Born approxi-
mation, its error increases when the object becomes very large
in size or in contrast against the background. An efficient
full-wave method that, in principle, does not suffer from this
limitation is the CG-FFT method [33}-{36). This iterative
method is more efficient than the MOM, as it requires only
O(K N log, N) arithmetic operations, where K is the number
of CG iterations. In our previous studies of the electromagnetic
induction problem [29], [30], we propose to incorporate the
EBA to further improve the efficiency of the CG-FFT or
BCG-FFT methods [49].

Our aim here is to solve (1) for the unknown electric field £
within the inhomogeneous region. Noting that the integral in (1)
is a 2-D convolution between the Green’s function g(r) and in-
duced current source x(r)E.(r), we can invoke the convolution
theorem to rewrite (1) in an operator form

L[E] = B~ KFH{Flo@] Fx@E] } = B> ©)

This equation can then be solved iteratively by the CG-FFT
method [33], [34], [36].

We apply the EBA as the preconditioner. Hence, instead of
solving (6) directly, we solve an equivalent problem

LpiLE, = EFP) )

where the preconditioner is the EBA operator defined in (5).
Since the preconditioner [.;3113 is achieved by the FFT algorithm
in (5), this new (7) can again be solved efficiently by the
CG-FFT method. With this preconditioning, this scheme con-
verges much faster than the regular CG-FFT method [28], [29].
In reality, we found that even using the EBA preconditioner
in only the first step of the conjugate-gradient (CG) method
can significantly improve the convergence speed for typical
electromagnetic problems. This partial preconditioning avoids
the additional cost of the preconditioning in the majority of the
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CG steps. The following numerical results are obtained by this  this FFT enhanced version adapted to the current problem in

preconditioning scheme.

Equation (7) can also be solved by using the biconjugate-gra-
dient (BCG) method [31], [32], [49] with the FFT algorithm.
The resulting EBA preconditioned BCG-FFT method is more
efficient than the CG-FFT method described above. For proce-
dures of the BCG iterations, see, for example, [31] and [49].

Note that there is no approximation in the above EBA
preconditioned CG-FFT and BCG-FFT methods aside from
the discretization procedure. The combination of the EBA and
CG-FFT and BCG-FFT methods provides a seamless method,
which is both efficient and accurate for low- and high-contrast
scatterers. In practice, we define an acceptable error criterion
€min based on the La-norm residual error
B~ B= _

B -

to terminate the iteration process. For lower contrast problems,
if the initial step of the EBA solution suffices, no further CG or
BCG procedures are needed; for higher contrast problems, the
CG or BCG iterations will continue until the residual error is
smaller that eq. Note that ex can always be calculated even
though the exact solution is not known. Compared with the reg-
ular CG-FFT and BCG-FFT methods, these EBA precondi-
tioned methods are more efficient [29].

ey =

IV. NONLINEAR INVERSE-SCATTERING ALGORITHMS

In the inverse problem, the unknown material properties €,(r)
and o(r) are inferred from the scattered electric field measured
at some discrete locations. This inverse problem is nonlinear, as
the material properties appear both in the contrast function x
and in E, in (1). Furthermore, this inverse problem is ill posed
because of the sparsity of measured data contaminated by noise
[38].

Methods for solving the electromagnetic inverse-scattering
problem include linear [37] and nonlinear [26], [28], [38],
[40], [42], [43], [47], [48] inverse methods. (See [44] for more
complete references.) In this study, we apply two methods for
nonlinear inverse problems. The first is an improved two-step
inversion method based on the EBA [25]-{28], [45]. This is
a compromise between the linear and full nonlinear inversion
methods. The second nonlinear method is based on the CSI
method [46]-[48] with an improved initial solution through the
two-step nonlinear inversion.

A. Two-Step Inverse Method Based on EBA

1) FFT Enhanced Two-Step Inversion Method : The EBA in
(3) can be rewritten for the scattered field as

E*(rp,rr) = k¥ / dr' g(rp — r')w(r)EX<(r',rr) (8)
D

where, for clarity, we have explicitly included the transmitter
and receiver locations rr and rg in the electric field. In the
above, w(r) is defined as

w(r) = x(r)M7(x) )

where M is given in (4).
The two-step linear inverse method has been applied in [27]
and enhanced by the FFT algorithm [28]. Here, we summarize

Step 1)

Step 2)

Cartesian coordinates [30] as follows.

The induced source: The first step of this scheme is
to invert for the induced source function w(r) from
(8). With the trapezoidal rule, (8) can be discretized
into a linear system of equations

A-w=d (10)

where A is an M x N matrix, d is the data
vector containing the measured scattered field,
N is the number of unknowns in domain D, and
M = MgM7 is the number of measured data points
determined by the number of source locations Mr
and the number of receiver locations Mp. Note that
this equation for the unknown w is a classical linear
ill-posed problem. A minimum-norm solution to
(10) can be obtained by an optimization procedure.
That is, we find a solution w that will minimize the
Lo norm functional

I=|ld-A-w|?+7lw]’ 1

where 7 is a regularization parameter. Minimizing I
yields a linear equation as follows:

(AT-A +4Dw=Al.d. (12)

Equation (12) can be solved iteratively by the CG
procedure with the cost of O(M N') per iteration.
The contrast function: Once w(r) is obtained, our
second linear inversion step is to invert for x(r) (and,
thus, ¢,(r) and o(r)) using (9) and (4). That is to
solve the following equation:

x() + Bu(e) - FH{FGF @] } =w@).  (13)

Equation (13) is a linear equation for the unknown
contrast function x(r), a function representing the
difference between the anomaly and background.
Equation (13) is a well-posed linear problem. It can
be solved iteratively by using the CG method to find
unknown complex permittivity € = co€ — jo/w.In
the CG procedure, the Green’s function operations
are accelerated by the FFT algorithm. This repre-
sents an acceleration over the earlier versions of the
two-step inversion scheme [26], {27], and reduces
the number of arithmetic operations to O(N log, N)
in each CQG iteration [28], [30].

With these procedures, the original nonlinear in-
verse problem has been converted into two linear in-
verse problems based on the EBA. This scheme uses
the FFT algorithm to accelerate the second linear
inversion step to greatly reduce the computational
cost from O(N3) to O(N log, N), where N is the
number of unknown pixels in the inverse model.
Next, we will improve the memory efficiency in the
first linear inversion step.
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2) Improved Two-Step Inversion Scheme: The above
two-step inversion scheme is a significantly enhanced ver-
sion of earlier work since the total CPU time is reduced to
O(C1K1MN + C:K3Nlog, N), where C; and Cp are
constants, and K and K are the numbers of the CG iterations
in the two steps, respectively [28]. However, the memory re-
quirement is still large for the first step as A requires O(M. N)
storage. We can further improve the memory requirement in
a way similar to the CSI method [47], [48]. Defining S and
D as the domain of measured data and the imaged domain,
respectively, and Green’s operator Gs and Gp as

Gspll= Kk} /dr’g (r-r)[], reSorD (149
D

we can rewrite (8) as
EF* (vp,rr) = {Gs [Einc (1"7!‘2')"”(1")] }(fR)v 15)

The first step of the EBA inversion for w(r) can then be stated
as the minimization of the functional
F =B - Gs[ERu][§ +ll,  09)

where S is the measured data domain. This functional is basi-
cally the same as that in (11), except that it is in an undiscretized
form.

Since (16) is a quadratic functional of w, it can be minimized
by the conjugate gradient procedure. Defining the data error

pi = B = Gs [Eu]
we can update w,, by the following CG procedure:
an

where the update directions {v.} are chosen by the
Polak—Ribiére CG directions

Wp = Wn-1+ Qnln

(18)
19

Vo =0

v, =dy, + n 2 1.

The gradient (Frechet derivative) of the cost functional with re-
spect to w is given by

Mt .
d, = —k? E [E;’“ (r, rT,,-)] /Sg“‘(r — ') pjn-1(r')dr’

j=1

+ywp—1, TrE€D. (20)

where the asterisk denotes the complex conjugate. By mini-
mizing F in (16), the constant o, is determined as

- _ (dn.:'vn)D .
|Gs[EReval s +lleall
Note that an important difference between this procedure and

that in the CSI (see [47]) is that w in (16), unlike the contrast
source in CSI, is not a function of source location. Therefore,

n

1)

the inversion is much faster than the CSI because the system of
equations for w is much smaller.

Note that even though the CPU time for this modified first
step remains O( K M N), the computer memory cost is reduced
from O(MN) to O(MpN), where M = Mz MR is the number
of measured data. After w is obtained, we solve (13) to deter-
mine the complex permittivity profile with the computational
complexity O(N log, N).

B. EBA Preconditioned CST

For many problems, the two-step inversion scheme provides
satisfactory results. However, since the EBA is an approximate
method, the inverse procedure based on the EBA to reconstruct
the complex permittivity profile may not always be adequate,
especially for very high contrasts. Under those circumstances,
some nonlinear inversion methods can be employed to achieve
better results. The recently developed CSI method has an im-
portant feature in that it does not require a forward solution in
the inverse iterations [47], [48]. We adopt this CSI method for
MW breast imaging by defining an object finctional

F=nsY ||E2* — Gsuw]|[s + 0 3 IXB —ws
J J

+xGo[wi] ||},
22)

where w; = x(r)E. (r,rr,;) forr € D is the contrast source,
and the normalization constants 7s and 7p are chosen so that
both terms in (22) are equal to one if w; = 0. The procedures to
minimize F in (22) for the solution of x can be found in [48].
It is worth noting that even though (22) is similar to (16), the
minimization of (22) is more time consuming since, here, w; is
a function of the source location.

Given the measured scattered electric field, we can invert for
the permittivity profile by the CSI method. However, in contrast
to the earlier CSI implementations, we use the above two-step
inversion result rather than the back-propagation as the initial
solution to speed up the convergence. Preliminary results show
that this improved CSI procedure accelerates the convergence
of the inversion as the two-step EBA inversion already achieves
a reasonable approximation. For our typical examples, the EBA
preconditioned CSI method requires less than half of the itera-
tions and CPU time of the original CSI method.

V. NUMERICAL RESULTS AND DISCUSSIONS

Our numerical models will aim to simulate a prototype MWI
system for breast cancer imaging developed at Duke Univer-
sity. Fig. 1 schematically shows the basic geometry modeled
in this study. The rectangular cylinder is filled with a matching
fluid whose electrical properties are close to those of the normal
breast tissue. The outer rim of the cylinder is an absorptive ma-
terial to attenuate outgoing waves. This configuration is aimed
to eliminate reflections from the tissue/ambiance interface and
the cylinder/air interface in order to enhance the image resolu-
tion. An array of transmitting and receiving MW antennas are
mounted on the outer surface of the cylinder. The operating fre-
quency for the following examples is 800 MHz (except as oth-
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Fig.2. Comparison of the EBA, Born, CG-FFT, and BCG-FFT methods and analytical solution for a circular cylinder (¢, = 64, 0 = 0.64 S/m) with the center
at the origin. The line source is at (0,0.03) m, while the receivers are at {0, y)m, y € {(—0.01,0.01)m.
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Fig. 3. Lossy cylinder with &, = 57.2, ¢ = 1.08 S/m, and diameter 0.08
m. The line source is at (0,0.08)m, while the receivers are at (0.y).y €
(—0.04,0.04).

erwise indicated), although both the apparatus and numerical
models are designed for wide-band signals.

A. Forward-Modeling Results

In our 2-D forward model, we simulate an electric current
source J = £J,(z,y) in an inhomogeneous conductive medium
with dielectric constant €.(z, ¥), conductivity o(z, y), and con-
stant permeability 1. The background medium is homogeneous
and has the properties ¢4 = 16, gy = 0.16 S/m, and p, = po
to simulate the normal tissue and the matching fluid inside the
cylinder.

We first study the accuracy of the EBA method against the
Born approximation, CG-FFT, BCG-FFT, and analytical solu-
tion for a circular tumor with €, = 64, 0 = 0.64 S/m and a
diameter of 0.01 m. The line source is 0.03 m away from the
cylinder center. Fig. 2 shows that the EBA result has a much
greater accuracy than the Born approximation for this high con-
trast medium. Both CG-FFT and BCG-FFT results have the
same accuracy, and take four and three iterations to reach a
relative residual error of 0.01% with the EBA preconditioner.
The CPU time for the Born approximation, EBA, CG-FFT, and
BCG-FFT methods are 1.2, 1.2, 3.5, and 2.2 s, respectively, on
a SUN Ultra 60 Workstation.

For larger contrasts and higher frequencies, as expected, the
accuracy of the EBA will decrease, and full-wave CG- and
BCG-FFT methods have to be used. In the second example,

we simulate a large-contrast circular cylinder with ¢, = 57.2,
o = 1.08 S/m, and a diameter of 0.08 m. The line source is
0.12 m away from the center of the cylinder. We compute the
electric field inside the cylinder by the CG-FFT and analytical
solution. Fig. 3 is the comparison of the numerical result and
analytical solution. We observe that both real and imaginary
parts of the numerical result agree well with the analytical
solution.

Fig. 4 compares the CG-FFT and BCG-FFT results for a
tissue with multiple tumors. The results again show excellent
agreement between these two methods. The BCG-FFT method
converges in only two iterations, while the CG-FFT method
converges in eight iterations to a residual error of 0.01%. The
CPU time for this case is 4.5 s, and 2.2 s for the CG-FFT and
BCG-FFT methods, respectively.

B. Inverse-Scattering Results

For the image formation, we have developed the two-step in-
verse method that is based on the EBA and CSI method. The
EBA inversion aims to produce a fast, albeit quantitatively less
accurate, image while the CSI method aims to produce an ex-
cellent accuracy at the expense of more computational cost. The
two-step inversion result is used as the preconditioner for the
CSI result. In the following examples, the measured data is ob-
tained by the CG-FFT method with a much finer grid than that
used in the inversion. Neither the EBA, nor the CSI method re-
quires a forward solution during the inversion iterations, thus,
the so-called “inverse crime” is not committed here. The back-
ground is the normal tissue with properties given for Fig. 2. We
use 60 transmitters and 60 receivers uniformly distributed on the
four edges of a square of size 16 X 16 cm?, giving a total of 3600
measured data points. The region to be inverted is divided into
29 x 29 unknown pixels with a cell size 0.0052 x 0.0052 m?.

In the first example, there are two anomalous objects within
the homogeneous medium. The first anomaly has a dielectric
constant of ¢, = 40 and conductivity o = 1.08 S/m. The other
object has ¢, = 57.2, 0 = 1.08 S/m. These two anomalies
simulate two tumors; the first one perhaps in the process of be-
coming malignant, while the second one is malignant. There is
a significant difference in the electrical properties of these two
tumors. The reconstructed results are shown in Fig. 5. Both the
permittivity and conductivity anomalies are well resolved. In
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Fig. 4. CG-FFT and BCG-FFT results for a tissue with multiple tumors. The line source is located at (0, —0.189). (a) Geometry of four tumors (6, = 72,
o = 0.72 S/m) in a background medium (€,+ = 16, o5 = 0.16 S/m). (b) Magnitude of electric field along (x, 0).z € {—0.1,0.1) and (c) along {0, ¥),y €
(—0.1,0.1). (d) Convergence curves for the CG-FFT and BCG-FFT methods.
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Fig. 5. Simultaneous inversion of dielectric constant and conductivity profiles at 800 MHz. The ground truth of: (a) €, and (d) o profiles. Inverted dielectric:
(b), (c) constant and (e), (f) conductivity.

this case, the preconditioned CSI method takes 70 iterations, ~ We then demonstrate the super resolution [38], [39] of the
and 8 min and 7 s CPU time to converge to a relative residual nonlinear inverse-scattering CSI algorithm. The same measure-
error of 0.97%. ment geometry as in Fig. 5 is used. We use an EBA precondi-
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Fig.6. Super resolution of dielectric constant and conductivity anomalies separated by only 0.22 wavelengths at 800 MHz. The ground truth of: (g) €. and(d)o
profiles. The inverted dielectric: (b), () constant and (¢), () conductivity. The measured data E2** has a 10% Gaussian noise (SNR = 20 dB).
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Fig.7. Inversion of dielectric constant and conductivity anomalies separated by only 0.22 wavelengths at 6 GHz with properties as in Fig. 5. The ground truth
of: (a) €. and (d) o profiles. The inverted dielectric: (b), (¢) constant and (e), (f) conductivity.

tioned CG-FFT to simulate the electric field outside the inver- truth and reconstructed profiles. This example clearly demon-
sion area. Within the region being inverted, there are four anom-  strates that the so-called super resolution [38] can be achieved
alies separated only by 0.22 wavelengths (2.06 cm) at 800 MHz.  for the high-contrast medium in MW breast imaging. This super
We add 10% Gaussian noise to the scattered field data (i.e., resolution is possible because the nonlinear multiple scattering
signal-to-noise ratio SNR = 20 dB). Fig. 6 shows the ground has been fully accounted for and because of the near-field mea-
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surement. For more in-depth discussions on this topic, the reader
is referred to [38] and [39].

Finally, we study the potential resolution at a higher fre-
quency of 6 GHz. In this case, we invert for two very small
anomalies only 0.28 cm apart and complex permittivity the
same as in Fig. 5. The image area is about 2 X 2 cm? with
29 x 29 pixels, giving a comparable computational cost as
Figs. 5 and 6. RMS noise of 10% for the scattered field data
has been added. Fig. 7 shows that our inverse algorithm can
resolve these small objects when operated at a high frequency.

C. Discussions

This study represents a new application of some of our re-
cent fast algorithms developed for low-frequency electromag-
netic subsurface sensing problems [28]-[30], [35], [41], [45],
[49]. However, for low-frequency induction problems, the con-
duction current is dominant and only the conductivity profile
can be inverted. For MWI, both dielectric constant and conduc-
tivity profiles must be inverted simultaneously. This represents
a much more difficult problem, and an increasingly important
application in biomedical imaging.

The above numerical results show the efficacy of our 2-D for-
ward- and inverse-scattering methods. In spite of this, there are
many outstanding issues that require further research. Firstly,
it would have been ideal if there is experimental verification.
However, at present, we are unable to present this verification
because our experimental setup has 3-D waveguide aperture
transmitting antennas, which cannot be adequately modeled by
our 2-D methods. Secondly, 3-D effects in breast tumor detec-
tion are expected to be very strong. Therefore, we are currently
pursuing a better experimental verification in the following two
directions: we are modifying our experimental setup so that
it can be better modeled by our 2-D models with some 3-D
compensation techniques, and we are developing full 3-D for-
ward- and inverse-scattering methods to include all 3-D effects
in MWI measurements. Thirdly, the breast tissue is not homoge-
neous because of the presence of fat, glandular tissue, etc. This
inhomogeneity will definitely degrade the images. These impor-
tant issues will be addressed in our future research.

VI. CONCLUSIONS

We have applied fast-forward and inverse methods to simulate
2-D MWI for breast tumor detection. The forward methods are
based on the EBA, FFT, and CG and BCG methods. The FFT al-
gorithm is used to expedite the EBA calculation, while the EBA
is used to precondition the CG-FFT and BCG-FFT methods.
The combination of these basic ingredients results in algorithms
with a complexity of O(N logy N). The inverse methods are
based on a two-step nonlinear inversion and the CSI methods,
which do not require forward solutions during the iterations
of the inverse solution. Numerical results demonstrate the ef-
ficiency of the forward and inverse methods, and the high reso-
lution of the image-formation algorithm for the breast-imaging
applications. Future work includes experimental validation and
3-D algorithms.
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ABSTRACT

This paper presents a review of the dielectric properties of
normal and malignant breast tissues for radio through
microwave frequencies, as well as a brief summary of the
experiment methods and the mechanisms that explain the
difference in the dielectric properties of normal and malignant
breast tissue. This information provides a basis for the
development of diagnostic techniques for breast cancer and
also highlights the areas that are in need of more experiments.

1. INTRODUCTION

The contrast in the dielectric properties between normal and
malignant tissues is a basis for diagnostic applications using
microwave devices. The study of normal tissues has been
widely reviewed. This paper, in addition, collects together
dielectric property data on benign and malignant breast tissues
from a number of researchers, and presents them in graphical
form so that this information is convenient for general
reference. 1t should be emphasized that the data shown has
been interpolated, extrapolated or computed from the graphs
and tables, 50 it is not necessarily precise. This paper also
reviews the mechanisms behind the differences in dielectric
properties of normal and malignant breast tissues,

Most data are represented in terms of conductivity o and
telative permittivity ¢, since o and € of biological materials
are practically independent of frequency up to the microwave
range [1]. For the two low frequency cases with no o and E
available, the data are represented in terms of a parallel
combination of a conductance G and a capacitance C. The two
peirs of terms are equivalent in that,

Y =G+ joC = (A/d)(c+juee") )

Where, Y is the complex admittance of the equivalent circuit
of an idealized parallel plate capacitor filled with the tissue of
o and €. A/d is the geometry factor. We assume (¢°,a) follow
a bi-variate normal distribution. Therefore, the modeling of the
data can be represented by the specific cross section of the
distribution function, which satisfies,

{(x-m)¥o, Hy-m,) o, - 2p(x-mXy-m)o,0,}(1-p9=1 (2)
where, x is the relative permittivity, y is the conductivity, and
m,, m, and &, O, are the marginel mean and variance. p is the

correlation coefficient of ¢’ and o. If only the mean and
variance values are available but not the original data pairs, we

0-7803-7252-2/02/$10.00 © 2002 IEEE

assume an independent distribution of (€°,6) and p=0.

All data are from human breast tissue, except for one case
from rats. The category of breast tissues in the literature is
ambiguous. In this paper, we define the following major
categories of breast tissue.

s fat

e normal, includes glands tissue (lobules that produce
milk), and connective tissue (fibrous tissue that
surrounds the lobules and ducts)

o  benign, includes fibroadenoma and mastitis

e malignant, i.c. breast carcinomas

We first display the data in the low and high frequency
regions, in the order of their publication date. Then we discuss
the consistency and inconsistency in the data as well as the
diagnostic value of the dielectric properties from the data.
Finally the mechanisms are reviewed.

2. REVIEW OF EXPERIMENT DATA

2.1, List of data at low frequency
1. Fricke et.al. ([2], 1926, 20kHz, 24°C), measured the parallel
capacitance and resistance (R=1/G) of excised samples from
55 patients, using a wheatstone bridge. Several types of tissue
were studied: fat, gland, mastitis, fibroadenoma and
carcinoma. Data is displayed in Fig.1. Only one sample of fat
is measured, no variance is available for this fype.

Figure 1: Capacitor versus Resistor

5 R o
[~ )

Lefi: original data; right: modeling of the data

2. Morimoto et.al, ([3,4],1990, 10kHz, 37°C) obtained in vive
measurements of breast cancer, fibroadenoma, normal breast
tissue and fatty tissue using a three-electrode method. The
proposed equivalent circuit is composed of R parallel with the
series of R; and C,. We transformed it to parallel R and C,
using R=RRJ(Ri+R.), C=Cp,. With no original data and
correlation coefficient available, Fig.2 displays the modeling
of the data, assuming p=0.
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Figure 2: Capacitor versus Resistor

3. Jossinet etal. ([5,6], 1996, 488Hz-1MHz, 21°C) measured
120 samples from 64 patients, using impedance probe sensors
connected with a microcomputer system. In Fig.3, data of six
types of tissue is displayed, gland (0), connective (#), fat (e),
mastopathy (square), fibroadenoma (+), carcinoma (V). We
calculated the relative permittivity and conductivity from the
original complex impedance data p (not the characteristic
impedance) using,

& =Im (1p'¥(ws), 6 =Re(i/p’), p=1NaHjoee”)  (3)

reouany 1HEY
Pigure 3 Permittivity and conductivity versus frequency

2.2. List of data at high frequnecy

4. T.S. England etal. ([7,8], 1949-50, 3-24GHz, 3T
measured the attenation o nepers/cm, and phase constant §
radians/cm of the standing wave pattern of the excised human
breast fat and carcinoma tissue samples in the wave-guide. We
computed the relative permittivity € and conductivity o using
[23, Eqn4.28},

e={(a’- PV’ poes, o=2af/op,  (4)

The variance due to these measurements were computed and
presented with the light marker in Fig. 4. Our extrapolations
are shown with dashed lines.
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Figure 4 permittivity and conductivity versus frequency

5. W.T. Joines et.al. ([9,10,11], 1980, 30MHz-2GHz, 37°C),
obtained in vivo measurements of SMT-2A tumor and
mammary gland tissue samples from 22 rats. The
nondestructive method uses an open-ended coaxial probe to
produce a fringing ficld in the termination tissue and a

directional coupler and an oscilloscope to detect the fringing
pattern. The dielectric properties are then computed. The data
is shown in Fig. §, in which skin effect is not corrected, and
the data can not be compared with in vitro data directly.

e g " e T 34
i i

"5_ W M't') o T

Figure 5: Permittivity and conductivity versus frequency [9)
6. S.S. Chaudhary etal. ([12], 1984, 3MHz-3GHz, 24°),
measured excised normal and malignant breast tissucs from 15
patients, using the time domain spectroscopy system of HP.
We use the total spread over the mean value (0.8%) to
compute the variance of the data, which is shown in Fig. 6.

10 »w

[

¥  cecisercy ) * * wocuency 0t}
Figure 6: Permittivity and conductivity versus frequency [12]
7. AJ. Surowiec atel. ([13], 1988, 0.02MHz-100MHz, 37°)
measured the inpit reflection coefficient of 28 samples from 7
patients, using a coaxial line sensor connected to an HP3377
network analyzer. Tissue types include ductal carcinoma,
lobular carcinoma, and surrounding tissues. The measured
dielectric values are available only at 100kHz and 100MHz,
and we use square symbols to represent the mean and
meantstd values of those data in Fig. 7. The authors provided
the parameters €., €, T, G, and o, by fitting the data with the
Cole-Cole equations {1],

€=t (s e)/(1+G) )-jo.oe 8
where f=1/2n, T is the relaxation time, f; is the relaxation
frequency, o is the distribution parameter that reflects the
range of 7. 8 represents the low frequencies f << f, o

represents the high frequencies £ >> f, When o =0, Eqn.5 is
the same as Debye equation.

» B

L w* [

frequency

{ru} Foguency (Hz)
Figure 7 Permittivity and conductivity versus frequency

The curves in Fig. 7 are computed from the fitted Cole-Cole
model in [13]. The dark lines are the mean valucs, the light
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tight color. Comparing the mean from the measurements and
the model, the conductivity values agree well, but the relative
permittivity values show some inconsistency.

8. A M. Campbell et.al. ([14], 1992, 3.2GHz, 24°C) measured
39 samples of normal breast fat, 18 samples of benign tumors,
22 samples of glandular connective tissue and 20 samples of
cancer from 37 patients, using a resonant cavity perturbation
method. Diclectric properties were measured using the
observation of the changes in resonant frequency. In Fig 8, the
left plot displays the original data. The right plot illustrates the

modeling of the data with Eqn.2.
e -
g * benign u-,';.-;
-";' .
o0 -
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Figure 8 conductivity versus permittivity
Left: original data; Right: modeling of the data
9. W.T. Joines ct al. ({15], 1994, SOMHz-900MHz, 24°C),

measured admittance of 12 normal mammary samples and 12
malignant mammary samples from 12 patients, using a flat-
ended coaxial probe connected to a network analyzer HP
8754A_ ¢ and o are then computed from the admittance with
the knowledge of the geometry factor. In Fig. 9, the mean
values are presented with the solid lines, the standard error on
the mean is presented with the dashed lines. Extrapolations are
represented with light lines.

i o
1
2
I'-:-le,.oh‘) L. Trequendy -z} .
Figure 9 Permittivity and conductivity versus es [15]

10. P.M. Meancy et.al. ([16], 2000 900MHz,37°) obtained the
in vivo breast microwave imaging of 5 patients, all non-
malignant, at 900MHz.

£

g i i A
if o ! {3 :
1% q4;
g z.' . -
e ik

Figure 10 conductivity versus permittivity

- lines are the meantstd values. Extrapolations are shown in  We display the modeling of the data of individuals in Fig. 10

to represent the heterogeneity within and across patients. The
correlation coefficient is not available and assumed to be 0.

2.3. Data consistency and inconsistency

Low frequencles. At low frequency ranges, the dielectric
values of the four types of tissue are all available for the first
three cases, as shown in Figures 1, 2 and 3. We cannot
compare them directly, because of the unknown geometry
factors in cases 1 and 2. Yet we can still make comparisons
according to the relative distribution of the data for the same
tissue types. The consistencies noted are listed below,

o The conductivity of the malignant tissue falls between the
fat (plus connective tissue) and the normal gland tissue
{plus the benign fibroadenoma and mastitis tissues).

o The benign and normal tissues can be grouped together
relative to the malignant tissues on the € -o plane.

o The relative position of the fat tissue on the £-G plane
compared to the other types is the same.

This information of data consistency provides a basis for
identifying breast cancer, benign tumor and normal breast
tissue using the tissue conductivity at 1kHz-1MHz.

The inconsistency in the first three cases is that the
malignant tissue has lower capacitance (or permittivity) than
that of the normal and benign tissues in case 2 and the lower
frequency region of case 3, but it has the largest capacitance
values in cases 1 and the higher frequency region of case3.
One of the possible reasons for the inconsistency is the
frequency difference. It is 10kHz in cas¢ 2, 20kHz in case 1
and 488Hz-1MHz in case 3, Therefore, the inconsistency can
be related with 2 turning frequency point in tens of kHz, above
which the capacitance value of cancerous tissues became
larger than that of normal and benign tissues. Other reasons for
the inconsistency are the intrinsic heterogeneity and the
temperature difference of tissue samples.

This information of inconsistency suggests that in the range
1kHz to IMHz2, the capacitance of breast tissues is not a good
quantity to diagnose breast cancer. More experiments and
analyses on the capacitance properties of normal and
malignant breast tissues are needed in this frequency range.

High frequencies. In the high frequency range, we can
compare the dielectric data directly.
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Figure 11 Permittivity versus frequency
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Figure 12 Conductivity versus frequency

Fig. 11 and 12 illustrate the dielectric data together in the
range S00KHz to 20GHz. One more case of breast fat [21] is
included, Four types of breast tissue: fat (s}, normal {0),
benigh (+), malignant (V) are displayed.

For a clearer view, Fig. 13 and 14 illustrate the modeling of
the data for multiple cases on the &-o plane at 900MHz and
3.2GHz. Again, four types of breast tissuc: fat (#), normal (o),
benign (+), malignant (V) are displayed.
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Figure 14 Conductivity versus Permittivity, at 3.2GHz

From Fig. 11-14, we observe the data inconsistency,
o The mean dielectric values of normal and malignant breast
tissues have obvious variability.
¢ The mean conductivity values of normal breast tissues in

Joines® rat data, Campbell's data, and Meaney’s data are -

more than twice that of other normal breast tissue cases at
the corresponding frequencies. The mean permittivity

values of normal breast tissue in Joines® rat data and

Campbell’s data are more than twice that in England's

data and Chaudhary's data at 3.2GHz frequency.

The possible two reasons for the inconsistency are listed
below, which may help explain the results and improve the
future experiment designs.

o Experiment method

1. Limitations in experiments. Chaudhary’s samples
were collected in physiological saline, which will
affect the accuracy of the data. Campbell’s malignant
samples are frozen and defrosted before the
measurement, which may affect the accuracy of the
data of this type.

2. In vivo vs in vitro, Joines® rat data is from in vivo
measurements  with  uncerrected  skin  effects.
Meaney’s data comes from reconstruction of in vive
microwave imaging. Others are from excised
samples. In vivo methods seem to have higher
dielectric values.

3. Sample temperature differences. Lower sample
temperature will make the dielectric value 2 little bit
lower, when the frequency is below 2GHz.

« Intrinsic heterogeneity

1. Normal breast tissues are composed of breast fat,
comnective tissue and gland tissue, etc. In the
literature, the composition of normal breast tissues
from case to case may differ.

2. Different stages of tumor development will change
the tumor’s dieclectric property and introduce
variability [2,13]. Some samples of malignant tissues
were actually composed of small parts of malignant
cells infiltrating within a large part of normal cells,
which may decrease the mean value of the malignant
tissue samples.

3. Across patients. The breast tissuc samples from
patients with different water content or fat content
and in different stage of menstruation, pregnancy or
lactation will have obvious differences in dielectric
values. Campbell’s data came from a relatively larger
patient group, which may introduce wider variability.

This inconsistency information indicates the importance of
using proper sample storage method before experiments and
suggests a standardization of the experiment conditions like
the sample and environment temperatures, as well as the
record of patients’ information for later analysis.

Although there are so many conditions out of control, we
still observe the data consistency from Fig. 11-14
¢ The mean conductivity of the normal tissue is less than
15ms/cm up to 3.2GHz.
e Malignant tissues bave higher mean permittivity and
conductivity values than those of normal breast tissues
o Fat tissues have the lowest mean permittivity and
conductivity values
This data consistency information provides the basis for
breast cancer diagnosis using the dielectric properties in the
microwave frequency range.
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« 2.4, Discussion of the diagnostic values

It is misleading to use only the contrast of the mean values to
judge the diagnostic value of the dielectric properties. Since
the intrinsic heterogeneity in malignant tissue is large, this will
decrease the mean contrast. The mean values from samples
across patients will decrease the contrast as compared to an
individual patient. Therefore, the diagnostic value of the
dielectric properties seems to be underestimated, ag in case 8.
A better concept might be to use the contrast of the maximum
value of the malignant tissue with the mean of the
neighborhood normal tissue samples [2,13]. Better criterion
can be defined using the probability of detection and false
alam, in which the random model of the point dielectric
values and the spatially distributed diclectric values are
incorporated.

In summary, we observed the diagnostic valuc of the
dielectric properties from the data, as

¢ The low conductivity values of the normal breast tissue

enable penetration of microwave frequencies up to the low
GHz range, which coincides with the simulation results in
[221. ‘

¢ At 100MHz-1GHz, dielectric properties can significantly

help classify normal and malignant tissues.

o At frequency ranges of 1GHz-3GHz, dielectric properties

can help classify normal and malignant tissues.

s At 10kHz-1MHz, dielectric property can help classify

normal, benign and malignant tissues, yet mainly depends
on the conductivity.

2.5. Areas in need of more experimenty

e The dielectric properties of benign tissues compared with
that of the malignant tissues and normal tissues in the
frequency range of 100MHz-3GHz.

e The spatial distribution of the diclectric properties of
normal, benign and malignant breast tissues.

e The dielectric properties of human breast cancer in
different development stages,

3. MECHANISM: NORMAL VS MALIGNANT TISSUE

We first review the mechanism of the dielectric properties of
biological tissues in general.

The frequency dependence of dielectric properties of
biological tissues is related to the polarization of molecules
and structural interfaces in response to the applied electric
field [9). Data from Schwan and Foster on high water content
muscle tissue suggests the presence of three dispersion
regions: alpha, bets, and gamma, with the relaxation
frequencies to be kHz, hundreds of kHz, and GHz [17]. The
delta dispersion, located in half way between beta and gamma
regions, has also been identified [1,18,19].

For engineering applications, the alpha dispersion has little
significance [1]. Beta dispersion occurs at radio frequencies,
and arises principally from the charging of cellular
membranes, with smaller contributions from the protein
constituents and ionic diffusion along surfaces in the tissue
[1,18,19]. '

Tissues typically exhibit a small dispersion between 0.1 and
3GHz, which have been termed the delta dispersion [1,19] or
“UHF relaxation™ [18]. A combination of mechanisms are
suggested for this region: bipolar relaxation of the water of
hydration “bound™ to proteins, 8 Maxwell-Wager effect due to
ions in the cytopalsm collection against relative nonconductive
protein surface and rotation of polar side-chains on the protein
surface [1,9,18]. The relaxation frequency is dominant mostly
by bound water (fr of 100-1000 MHz {1], Protein molecules
(fr of 40-300 MHz) and free water (fr=25GHz).

The gamma dispersion occurs with a center frequency near
25GHz at body temperature, due to the dipolar relaxation of
the free and bound water and ionic conductivity. Campbell and
Land [14] attribute higher than expected conductivity at 3.2
GHz to the “tail end” of B-dispersion effects.

In recent studies, a variety of factors have been explored,
which lead to pronounced difference in dielectric properties in
normal compared with malignant tissues, as listed below:

Necrosis. Inflammation and necrosis are commonly found in
malignant breast tissues. Presence of necrosis leads to
breakdown of cell membranes and thus a larger fraction of the
tissue that can carry cumrent at low frequencies §20], which
decreases the capacitance of the tumor [2].

Charging of the cell membrane. In breast carcinoma, there is
a progressive replacement of fat lobules with fibroblastic
proliferation and epithelial cells. Which also accompanied by 2
variety of alterations at the transformed cell surface [12(22)].
Cancer cells have reduced membrane potentials and tend to
have altered ability to absorb positive ions [19(77)], they have
a higher negative surface charge on their membrancs
(9(4,21),19(78)]. According to Joines et.al., conductivity of
the malignant tissues is increased with this mobile charge
being displaced and rotated by the microwave field [9].

Relaxation times. The relaxation times in malignant tissues
are larger than those in normal tissue, indicating that a
significant increase in the motional freedom of water has
occurred [19(75)]. Surowiec et.al.[13] reported that cancerous
breast tissues have average dielectric relaxation times between
0.6us and 14 us and the surrounding normal tissues had
shorter relaxation times of 0.3us.

Sodium concentration and water conteat. The sodium
concentration in tumor cells is higher than in normal cells
[19(76)}. The excessive sodium concentrations not only affect
the cell membrane potentials [10, (9-11)], but causes
malignant tissue to retain more fluid. According to Joines et.al,
the excess sodium fluid alone would yield greater conductivity
and permittivity values in malignant tissue than in normal
tissue. In addition, the fluid is retained in the form of bound
water, which has larger values of ¢ and ¢ than free water [10].
Malignant tissues have significantly higher water contents
than normal tissues {18,19 (76)]. The data from Campbell and
Land [14] illustrates the diclectric properties related with the
water content at 3.2GHz of the breast tissues, as shown in Fig.
15 and 16. The relationship between relative permittivity and
water content is strikingly similar to the relationship between
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conductivity and water content. This leads to the conclusion

that the same mechanism is responsible for the change in both

diclectric properties.
hgnantbreastﬁssuehnsahighermﬁoofwatercoment

REFERENCES

K.R. Foster and H.P. Schwan, Dielectric propertics of tissues in CRC
Handbook of Biological Effects of Electromagnetic Field, C. Polk and
E. Postow Eds. Boca Raton, CRC Press, 1996

compared with that of the normal tissue, which coincides its 2 :'-::fkj C':d S. ;‘m'"g" E’;:'i;?m of Tumars of the
\J. Cancer Res., vol. 16, pp. 310-376, .
higher values of permittivity and conductivity than nommal ;e 0 icouchi, litani T, “Measurement of the electrical bio-
breast tissue at the same microwave frequency. However, in impedance of breast tumors™. Eur Surg Res. 1990;22:86-92
this data taken at 3.2 GHz, there is not a marked difference in 4.  Morimoto, T., Kimura, S. et.al, “A study of the electrical bic-impedance
the water content of benign breast tissue and malignant tumor. of umnors”, 1Investig. Surg. 1993;6:25-32
5. 1. Jossinet, “Variability of impedivity in normal and pathological beeast
tissue™, Med. & Biol Eng. & Computing 1996;34:346-350
-~ + 6. I Jossinet, “The impedivity of freshly excised human breast tissne™,
£ 60 Lak t Physiol. Meas, 1998;19:61-75
3 s0d o e e e R A 7. T.S. England and N.A. Sharples, “Dielectric Properties of the Human
£ Pt ki SR A Body in the Microwave Region of the Spectrum Nature March
E 40 o momel Breast Tiase' o 1949;163:487-488
E 30 - EILNS S 8. T.SEngland, “Diclectric Properticz of the Human Body for Wave-
w o t.. * tengths in ¢he 1-10 cm Range”, Nature Sep. 1950;166:480-481
L 20 s S ees ‘up 9. W.T. Joines, R. L. Jirtle, M. D. Rafal, D. J. Schaefer, “Microwave
i - ” L s $. Power Absorption Differences Between Normal and Malignant Tissue®,
& . * Int. J. Radiatior Oncology Biol. Phys., vol. 6, pp. 681-637, 1980.
T T T T T T ™ 10. WTJomea,“Frequency-DcpmdunAbnmuonofElecmmguuc
20 30 40 50 60 70 80 Energy in Biological Tissue”, JEEE Tv th dhi
Water Content (% by weight) I gngl_rmg v_:l JBME-BI nom:'dpp 17—20 :u&uodm 1984
" . P . . anabe W, oines, “A estructive for meamuring the
Figure 15 Relative permittivity of human breast tissue vs complex permittivity of diclectric materials at microwave frequencics
water content using an open transmission line resonator”, IEEE Trans. Instrumentation
. and Measurements 1976;25:222-226
'g . e 12. S. S. Chaudhary, R. K. Mishra, Arvind Swarup, Joy M. Thomas,
40 - + 'Benign Breast Tomor’ . “Diclectric Properties of Normal & Malignant Human Breast Tissues at
% : 'Mdmn;:r:-;t :'“W . bR h Radiowave & Microwave Frequencics™, Mndian Journal of Biochemistry
= 304 ”““"m.r:me. . ° . & Biophysics, vol. 21, pp. 76-79, February 1984
.-E‘ Norml oM, 13. A.J. Surowicc, 5.8 Stuchly, JR. Bar, A. Swarup, “Diclectric Properties
= 20+ £, of Breast Carcinoma and the Surrounding tissues”, [EEE Trans.
v ®  * . Biomed. Eng, 1988; Vol 35, No.4:257-263
§ 10 - - ,;, ogoe X 14. A. M, Campell, D. V. Land, “Diclectric propesties of female human
PR S d. breast tissue measured in vitro at 3.2 GHz", Phys. Med. Biol., vol. 37,
T — T T no.1, pp. 193-210, 1992,
20 30 40 50 60 70 80 15. William T. Joines, Yang Zhang, Chenxing Li, and Randy L. Jirtle, “The
. measured clectrical propertics of normal and malignant burman tissucs
Water Content (% by weight) from 50 to 900 MH2", Medical Physics April 1994;vol 21;4:547-550
Figure 16 Conductivity of uman breast tissue vs. water 16. Paul M. Mcanty, Margarct W. Fanning, Dun Li, Steven P. Poplack, and
content Keith D. Paulsen, “A Clinical Protatype for Active Microwave Imaging
of the Breast”, IEEE Transactions om Microwave Theory and
7Technigues, vol. 48, no. 11, pp. 1841-1853, November 2000.
4. CONCLUSION 17. P.Debye Polar Molecules. New York, Dover. 1929, pp. 77-108.
. . - . KR . J. L. Schepps, “Diclectric Propertics of Turaor and Normal
.Th‘s paper presents an initial review and mﬁolldam?n Ofﬂ?e " 'ﬁsw::“: JRmclio h;lprll:!ghm:ﬁqmve Fm:uoe:lcies", Journal of
dielectric properties of normal, benign and malignant tissues in Micrawave Power, vol. 16, no. 2, pp. 107-119, 1981
the range of 10kHz-20GHz. A brief explanation of the 19. RPehig“Dickectric Properties of Biclogical Materials: Biophysical snd
experiment methods is presented as well as the mechanisms &ﬁ'&_;{’éﬁ?&" o 45‘:4‘5;328 trans. on  Electrical Insulation
that explain the difference in the dielectric properties of ;) RmimKR. Foster snd LLWolf, “Dielectic propertics of VX-2
normal and malignant tissues. The consistency and carcinoma vs. normal liver tissues”, [EEE trans Biomed. Eng., BME-
inconsistency of the data are discussed as well as suggestions 33,522,1986
for the possible inconsistency. It is observed that the diclectric 2 gﬁa‘m' '8 Gabil, “Compilation of the Dielectric Properies of Body
properties of & even tt h containi inty, mua n RF - Mncwwave. mq-
have good diagnostic value in the range of 100MHz-3GHz.
22 LR. Mallard, D.C. Lawn “Mammary tumor”, Nature 1967;213:28-30
23. Constantine A. Balanis, Advanced Engineering Electromagnetics, Jobn
ACKNOWLEDGEMENT e 198 vt
1 appreciate Dr. Loren W. Nolte and Dr. William T, Joines's
help of modifying this paper and I wish to thank Dr. Gary
Ybarra and Dr. Qing H. Liu for their helpful discussions. This
work was supported in part by NIH/NCI under grand 5PO1
CA42745-13.
Proceedings IEEE SoutheastCon 2002

462




APPENDIX 3

PERFORMANCE ANALYSIS FOR BAYESIAN MICROWAVE IMAGING IN DECISION
AIDED BREAST TUMOR DIAGNOSIS

Liewei Sha, Loren W. Nolte, Zhong Qing Zhang, and Qing H. Liu

Dept. of Electrical and Computer Engineering, Duke University
Durham, NC 27708-0291, lwn@ce.duke.edu

ABSTRACT

In this paper the Markov Random Field is used to mode] the
breast permittivity cross section as & propagating mediam,
and incorporate it into the forward Electromagnetic (EM)
propagation to predict the random field of the EM measure-
ments at a received array of sensors. Given these EM field
measurements, Bayesian approaches are then developed to
compute the likelihood ratio for tumor-detection and the a
posteriori probability display of tumor localization. Quan-
titative performance evaluations using simulations demon-
strate the advantage of using the Bayesian approach to di-
rectly process the measurement data as compared to using
the Bayesian or threshold approaches to detect and localize
the tumor based on the reconstructed permittivity image.

1. INTRODUCTION

Microwave imaging is a promising new modality for breast
cancer diagnosis, partly because it is non-invasive and the
permittivity contrast between normal and malignant breast
tissues is high |1}. In addition, the attenuation of EM propa-
gation in normal breast tissues is low so that it can penetrate
into the depth of the tissue [1]. Most of the research in this
field has focused on the study of the diclectric properties
[1.(1-22)}, the design of the microwave imaging prototypes
{21, and the improvement of the EM forward and inverse
algorithms (31{4][5]. However, none of this research has
incorporated signal detection theory directly into the mi-
crowave imaging at the measurcrent level. Markov Ran-
dom Fields (MRF Hammersley and Clifford [6]) and detec-
tion theory have been applied in mammagraphy for diagno-
sis, such as [7][8](9]. However, [7] and (8] only assumed
a simple deterministic disk object model. (9] did not uti-
lize the a priori knowledge of the projections. This paper
presents Bayesian algorithms for Scattered Electromagnetic
fields through an Uncertain Permittivity Image (BP_SEUPI),
which incorporates the knowledge of the a prior permittiv-
ity image modeled by the MRF, the measurement noise, as
well as the physical mode! of the forward scattered elec-
tric fie}ld. The Bayesian algorithms for the Uncertain Per-
mittivity Image (BP_UPI) and the Threshold Image Proces-

0-7803-7584-X/02/$17.00 ©2002 IEEE 1039

sors (TIP) are also presented for comparisons. It should be
noted that the forward EM scattering field is computed us-
ing the Extended Born Approximation (EBA) accelerated
CGFFT method, which has been proposed by Zbang and
Liu in [4)[10). The reconstructed permittivity image is ob-
tained using the EBA as the initial solution followed by the
Contrast Source Inversion (CSI [11]) method, which has
been proposed by Zhang and Liu [4].

2. DIAGNOSIS MODEL

The binary hypotheses considered are:

Hy: No tumor present

H,: Tumor(size Lx L) present, located at an unknown posi-
tion S on the 2D lattice N of the permittivity cross section.

The decision as to whether the tumor is present or not,
ie. whether Hg or Hy is true, is the detection problem.
Where the tumor is located if H is true, is considered to be
2 localization problem.

The data for the BP_SEUPI are the microwave measure-
ments r, shown in the middle of the Fig. 1. r is composed of
concatenating picces. Each piece is a complex Kx 1 vector
representing the narrow-band frequency component of the
scattered electric field sampled by K sensors, from a sin-
gle transmitter, which is one of the K sensors. It assumes
r = g+ n, s is the signal, and 5 is the additive noise ar
the sensors, modeled by a multivariate complex Gaussian
distribution, with zero mean and 072/ covariance matrix.
The signal to noise ratio (SNR) is given by 10log10(124~)
(dB). The propagating medium of the EM ficld is the un-
certain permittivity image modeled by the MRF, a sample
of which is shown in the left of Fig. 1.

The data for BP_UPI and TIP is the reconstructed per-
mirtivity image e, = T~1(r), as shown in the right of Fig.
1 where 7! represents the reconstruction procedure.

The uncertainties in this problem are the tumor position,
the noise at the sensors, as well as the spatial distribution of
the breast permittivity which reflects statistically the tissue
variance in individuals and the background structure vari-
ance across patients.




Fig. 1. Nombers 1-24 represent the sensors. Left: original
tissne permittivity image; Middle: real and imaginary part
of a sample measurement data; Right: reconstructed tissue
permittivity image.

2.1. Model of Breast Permittivity Image

We utilize the MRF to model the breast permittivity im-
age, because it implements the idea that spatially nearby tis-
su¢ permittivities are similar. The Gaussian MRF (GMRF,
Chellappa [6]) is selected because it provides a simple form
to be incorporated in the Baysian approaches. It is important
to realize that this mode] is statistical, and is not intended to
be a model of the detailed deterministic structure of permit-
tivity of a particular individual. The GMREF is defined as

pizilen € R\ {(i,N}) =

exp (";.:g;(f-‘:' —{Bi5=Tuieny Bustan @En—su))’) M
ez !

where y1;5 and o7 are the mean and variance at (). Bi7),(a)
are the interaction coefficients. The B's provide two kinds
of information: one is the neighborhood of (), i.e. N;
which implics that the permittivity at (1,§) only depends on
the permittivities in it's neighborhood. Another is the influ-
ence of the neighbors on the point (i,j), as represented by
the sign and value of the interaction coefficients.

We assume the permittivity image size is 9.2cmx9.2cm,
529 pixels. The tumor size is 25 pixels. The mean values of
tumor and backgroundare ¢ = 40and g, = 30, whose val-
ues are similiar to normal and malignant breast permittivity
values from experiments [1]. The interaction coefficients
of mmor and background are 8; with 3 pixel comrelation
Jength and B, with 20 comelation length. An algorithm pro-
posed by Rue [12] is used to fit the interaction coefficients
to the Gaussian field. Applying Hammersley-Clifford theo-
rem [6), given Eqn.1, we derive the mean vector 2 and ug,
covariance matrix Q and Qs of the joint pdf of the permit-
tivity image under the Ho and H, conditions respectively.
Subscript S denotes the tumor position.

2.2. Detection and Localization Approaches

According to signal detection theory, the optimal detector is
the likelihood ratio of the data vector followed by a thresh-
old whose value is determined by the optimum criterion

1040

(T.G.Birdsall). The optimal localization processor calcu-
lates the a posteriori probability of the tumor position given
the data vector. We derive the likelihood ratios(\) for the
Bayesian detector and threshold detector, as well as the a
posteriori probability image for the Bayesian localization
processors. We assume that the unknown tumor position
has a uniform distribution a priori on the 2D lattice Q.

2.2.1. Bayesian Processor for Scattered EM field propa-
gated through the Uncertain Permittivity Image (BP .SEUPI)

detector  A(r)

Tsea f,, oxp (- Tl fe=Tlelp(e, | H1, S)der
., e (- =T e=Tleely e, | HOVder

@

localization processor
P(SIr)  f,_ exp(~ =T =Tl yp e, | H1, S)der.
)

Both the BP.SEUPI detector and the localization proces-
sor require a high dimensional integration, which is a tough
problem. This paper tries to overcome this difficulty by us-
ing a multivariate complex Gaussian distribution to approx-
imate the random field of the measurements data, which has
been found to have good performance in the simulations.

2.2.2. Bayesian Processor for Uncertain Perminivity Im-
age (BP.UPI)

detector A(ﬂr‘) o<
LsealQsl| exp(l&:.&ﬁg(‘_':ﬂ‘_%ﬁ_ﬂil_gﬂ‘_':'ﬂl)

0]
localization processor

— )T _
p(Sler) o} Qslgxp(-(‘r Bs) Cz?s(e,. ps)) ®

2.2.3, Threshold Image Processor{TIP)
detector A=maz & ()
localization processor S = sm g’;! «(S) ®)

3. SIMULATION RESULTS

3.1. An example

Fig. 2a) shows an example of a stochastic background per-
mittivity image of the tissue, along with a simulated tumor,
modeled by the GMRE Fig. 2b)-d) are the reconstructed
permittivity images from the perfect measurement data as
well as from 60dB and 50dB noisy measurement data. The




signal detection approach using the permittivity data com-
putes the a posteriori probability of the tumor Jocation given
cither the original permittivity image, or the teconstructed
image as data. Fig. 2e gives an upper bound on tumor lo-
calization by plotting the a posteriori probability of tumor
location using the tissue data of Fig. 2a. Fig. 2f-h shows the
a posteriori plots of tumor location based on post process-
ing the reconstructed tissue data shown in Fig. 2b-d. Fig.
2j-1 shows the a posteriori plot of tumor location based on
the same measurements used to get the reconstructions in
Fig. 2b-d.

Plots 2g-h show that at the 60dB and 50dB SNR con-
dition, the BP_UPTI using the reconstructed data misses the
correct location of the tumor, and Fig. 2k-1 shows that the
BP_SEUPI using the measurement data gets the correct tu-
mor Jocalization with high probability. This is a specific ex-
ample where the BP_SEUPI works better. In the following
sections, it is demonstrated statistically that the processors
using the measurement data have berter performance.

i

Fig. 2. a) Original tissue permittivity image; b)-d) Recon-
structed permittivity from the measurement data b) with-
out additive noise c)d) with additive noise, ¢) 60dB SNR d)
50dB SNR; e)-h) the a posteriori probability of the tumor
position given the permittivity image data - p(S | ¢,), data
&, comes from a)-d); j)-1) the a posteriori probability of the
tumor position given the measurement data - p(S | r)

3.2. Detection performance

Fig. 3a) illustrates the detection performance comparisons
assuming no additive noise. In 3a) the ROC of the thresh-
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Fig. 3. The detection performance of the BP.UPI using
original tissue data, BP_UPI using reconstructed permittiv-
ity image data, TIP using reconstructed permittivity image
data and BP_SEUPI using measurement data. a)no additive
noise presents at seasors; b)c) [Inf, 60,50] dB noise at sen-
sors b) BP_UPI & TIP ¢) BP_UPI & BP_SEUPIL

old detector provides a performance lower bound. The TIP
mimics the way a routine visual examination of the image
might be done. Although it is not sophisticated, it’s ROC re-
flects the problem of high positive predictive Value(PPV) of
conventional mammography. Using the reconstructed per-
mittivity image data, the BP.UPI detector is much better
than the TIP detector, especially when the probability of
false alarm is low, because the BP_UPI utilizes the o pri-
ori knowledge of the tissue background across patients and
the a prior knowledge of the different characteristics of the
normal and malignant tissues to improve the detection per-
formance.

Fig. 3a) also shows that the BP_SEUPI detector using
the measurement data is better than BP_UPI detector using
the reconstructed permittivity data, yet worse than BP_UPL
detector using the original permittivity data. In reality, we
do not have access to the original tissue permittivity im-
age directly but to the EM measurements. However, this
provides an upper bound for performance evaluations. The
BP_UPI detector using the original permittivity data is beder
than the BP_SEUPI because the forward EM field maps the
variables from the original permittivity domain to the mea-
surement domain, which shrinks the random variable space
and decreases the detectablity.

Fig. 3b)) compares the performance of the detectors
when noise is present. It indicates that sensor noise de-
grades all the detection performances. It also demonstrates
that for three SNR conditions, both Bayesian detectors are
better than the threshold detector and the BP_SEUPI is bet-
ter than the BP_UPI using the reconstructed permittivity data.




Fig. 4 shows the localization performance of the BP_SEUPI

using the measurement data, and the BP_UP] and TIP using
the reconstructed tissue permittivity data. The localization

&) Window diameter =0 b) mindow cemeter =1

geee -

w5288 .

Prob. of carrect Localization Probs. of correct Localizelion
F -

Fig. 4. Localization performances: solid line, BP.SEUPI
using the measurement data; dotted line, BP_UPI using the
reconstructed tissue permittivity data; dashed line, TIP us-
ing the reconstructed tissue permittivity data

performance is shown using the probability of correct lo-
calization (PCL) curves. PCL is obtained by computing the
ratio of the number of correct localizations over the total
trials. The localization is comect if the located tumor po-
sition is within the test window. If it is required that the
located position is exactly the same as the real position to
be true, the window diameter is zero. For the other vales
of the window diameter:1,2,2.8284, the window sizes are
9,13,25 pixels. Fig. 4 shows that at 50dB or 60dB SNR
condition, both the BP_UPI and the BP_SEUPI have better
performance than 0.9 PCL. They arc much better than the
threshold approach for all the tested SNR conditions. The
BP.SEUPI localization using the measurement data is the
best of the three.

4. CONCLUSION

The results of the detection and localization performances
show that the decision-aided Bayesian microwave imaging
approach proposzed in this paper, BP_SEUPI, has the poten-
tial of providing additional and useful information for radi-
ologists. It is an algorithm whose goal is at the heart of the
ultimate decisions; i.e. is a tumor present, and if so where.
It benefits from incorporating the a priori knowledge, al-
though uncertain, of normal and malignant breast permit-
tivity. It also gains a decision performance advantage by
processing the measurements directly rather than as a post
processor to a reconstructed image.
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APPENDIX 5

Incorporating statistical models of tissue
permittivity into an optimal signal detection theory
framework for the detection of breast cancer at

microwave frequencies
Liewei Sha, Loren W. Nolte, Zhong Qing Zhang and Qing Huo Liu

Abstract— This paper addresses directly the decision-
theoretic task of detection and localization of breast tumor
using microwave measurements and optimal signal detec-
tion theory. Microwave has the advantages that at
low power levels there are no radiation dangers, no con-
trast agents, and the examinations are comfortable. An op-
timal signal detection theory framework is used to improve
the probability of tumor detection for a fixed probability
of false alarm. 2D Markov Random field statistical models
that characterize the spatial properties of both benign and
malignant breast tissue permittivity are incorporated into
the forward electromagnetic (EM) propagation to predict
the random field of the EM measurements at a received ar-
ray of sensors. This information in turn is incorporated into
a likelihood ratio algorithm for tumor detection. Examples
of Receiver operating characteristics (ROC) and probabil-
ity of correct localization (PCL) curves are presented as
a function of local uncertain tissue permittivity character-
istics, and tumor contrast, size, and shape, and compared
with algorithms that optimally post process a reconstructed
image. Computationally simpler tumor detection and local-
ization algorithms, simulations of their convergence, and ap-
proximations to the ROC using the detectability index are
presented. Simulations also indicate the effect of the sensor
array configuration on tumor detection performance.

Keywords— Bayesian, detection, localization, microwave
imaging, breast tumor, permittivity

I. INTRODUCTION

Breast cancer is a significant public health problem for
women in the world. The major traditional modality for
breast cancer diagnosis is X-ray mammography. It is rel-
atively cheap and fast, but it exposes the body to ionized
radiation. In order to operate within safe limits, the con-
trast of the images tends to be low. Microwave imaging
is a promising new modality for breast cancer diagnosis,
because it is non-invasive and the normal and malignant
tissues of the breast have high contrast in dielectric prop-
erties in certain ranges of the electromagnetic (EM) fre-
quencies(1], 2], [3], [4], (5], [6]. In addition, the attenua-
tion of EM propagation in normal breast tissues is low so
that it can also penetrate into the depth of the tissue[7],
[8], [9], [10]. At this time, breast microwave imaging is not
intended to replace X-rays, but to provide additional in-
formation to the radiologist to improve the performance of
breast cancer diagnosis.

The Authors are with the Department of Electrical and Computer
Engineering, Duke University, Durham, NC 27708-0291 USA. E-mail:
lwn@ee.duke.edu
Submitted to the IEEE Transactions on Medical Imaging

Most of the research in this field has focused on the ex-
perimental and theoretical study of the dielectric properties
of breast tissue at microwave frequencies[1-10}, the design
of microwave imaging prototypes [11] and the improvement
of 2D and 3D EM reconstruction algorithms [12],[13], and
[14]. However, none of this research has incorporated signal
detection theory directly into microwave imaging. Bayesian
theory has heen applied in mammography for diagnosis,
such as [15][16][17]. However, [15] and [16] did not incor-
porate a random model of the tissue being imaged, but
assumed a simple deterministic disk object model. In [17]
the reconstructed tissue image was post-processed, but the
propagation model was not fully utilized. In [18], initial
performance analysis was presented using a Bayesian mi-
crowave imaging approach. This paper includes the com-
parison of two Bayesian signal detection theory approaches
for tumor detection and localization. In one approach the
spatial uncertainty of the tissue permittivity is included in
the forward EM propagation, and optimal signal detection
theory is applied to the raw received sensor information, i.e.
without prior reconstruction of an image. In the other ap-
proach, signal detection theory is applied as a postproces-
sor to the reconstructed image.

In this paper the physics-based statistical decision the-
ory model is introduced first. Second, the Markov Random
Field (MRF) [19] is presented which is used to represent
the uncertainty in the permittivity of the breast tissue.
Optimal physics-based signal detection theory is used to
develop an image processing algorithm for both detection
and tumor localization that incorporates the uncertainty
of EM propagation through a tissue medium with uncer-
tain permittivity. Optimal signal detection theory is also
used to develop an image processing algorithm that incor-
porates uncertainty as a post processor to a reconstructed
image. Algorithms are also developed for obtaining upper
and lower bounds of detection performance, some of which
greatly improve the speed with which performance bounds
can be computed. Finally, simulation results are presented
for: 1) the detection and localization performance as a
function of tumor contrast, size, local uncertain tissue per-
mittivity characteristics, and shape. 2) the convergence of
the model covariance matrix estimation as support for the
number of Monte Carlo trials for the Bayesian approaches
3)comparison of the optimal physics-based detection and
localization approaches that incorporate uncertainty in the
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EM propagation with reconstructed image post processing
and 4) the effect of the sensor array configuration on the
performances. The appendix includes a proof of the in-
equality of the signal detection theory deflection coefficients
from original, measurement and reconstruction data.

II. PHYSICS-BASED STATISTICAL DECISION THEORY
MODEL

In this paper the problem of malignant tissue detection
is placed within the framework of physics-based driven sig-
nal detection theory. The decisions are first, the detection
problem, is a tumor present or not somewhere in the tissne?
Secondly, the localization problem, if present somewhere,
where is its location? We are particularly interested in im-
proving the early detection and localization performance
for the more difficult, and less obvious, situations due to
uncertainties in tissue characteristics. The detection prob-
lem can be expressed by the binary hypotheses
H;: Malignant tissue present, regardless of its particular
location, shape, and microwave permittivity characteris-
tics.
or
Hy: No malignant tissue present
The basic objective is to make optimal decisions about
whether H; or Hg is true and if H; is true, what is the
best estimate of the size, location, and permittivity char-
acteristics of the tissue.

The GMRF model presented in section Ilis used to char-
acterize the uncertainty in the permittivity of benign and
malignant tissue. An example realization of a 2D cross
section of tissue permittivity using this model, and a par-
ticular sensor array configuration, is illustrated in Figure
la. In this case, 24 sensors are arranged in a rectangle sur-
rounding the tissue It is important to realize that our char-
acterization is statistical so that the model does not convey
detailed deterministic anatomical features. The conductiv-
ity data is assumed to be a known constant for simplicity.
The numbers 1-24 show the positions of sensors of one of
the sensor array configurations used in this paper. All 24
sensors can both transmit and receive microwave signals,
as in a tomographic situation. ’

The microwave measurements at the sensors are repre-
sented by a K2 x 1 complex row vector r = [r1,72..TK],
where 7; is a K x 1 complex row vector, representing the
data relevant to the ith transmitter. K is the number of
sensors. An illustration of one realization of the measure-
ment vector r, real and imaginary components, is shown in
figure 1b, with K2 = 576. These measurements are result
of the scattered electromagnetic field that has propagated
through the uncertain permittivity media. This is an ex-
ample of data used by the Bayesian approach which incor-
porates directly the uncertainty of the raw measurements.
More specifically, under the H; hypothesis, the data vector

Fig. 1. a) original tissue permittivity image. b) measurements of
scattered electric field(mV/m). c) reconstructed tissue permittivity

image. Numbers 1-24 represent the array configuration.

7 can be expressed as:
r = s+n
$; = E**pp,gr),R=1..K,T=1.K

SNR(dB) B Lol

1)
where R represents the sensor as a receiver and T represents
the sensor as a transmitter. By using each sensor as the
transmitter in turn, and all sensors as receivers, we obtain
the data vector r. s is the pure signal, a K? x 1 complex
vector. n represents the additive noise at the sensors. n ~
N(0,206%Ix2). N notifies a multivariate complex Gaussian
distribution ([20]). Iz is an Identity covariance matrix
with size K2 x K2.

The other data representation that is used is that of the
reconstructed permittivity image €, = 7~}(r), an example
of which is shown in figure lc, where T~! represents the
reconstruction procedure.

Many different types of uncertainties can be incorporated
into the information processing. In this paper, the princi-
pal uncertainties considered are the the spatial uncertainty
of both benign and malignant breast tissue permittivity,
tumor position, its size and shape, and the noise at the
Sensors.

A. Measurements

The pure measurement data is obtained by computing
the scattered electric field through the uncertain tissue me-
dia, using the Extended Born Approximation (EBA) im-
plemented with the improved CGFFT method, which is
proposed by Zhang and Liu in [13][21]. The electric field
can be expressed as

E, = Eire 4 Eso, 2
where E™ is the incident field from an infinite line current

source J,

E"*(p) = —juwpio /D daG(p,9)J:(a). 3)
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E2°at is the scattered field
E*(pr,qr) = [pdaG(pr,9)A%(9)E:(a,97) (4)

where g7 and pp, are the transmitter and receiver positions.
AK2(q) = k*(q) — k? and kZ = w?poer — jwpoos. D is the
inhomogeneous object domain. G is the Greens function
for a homogeneous background medium

©)

The EBA method exploits the fact that G(p,q) is close to
4(p — q) to approximate Eq. 4 as

1
G(p,q) = Eﬂo(z)(kb Ip—ql)-

E*(pr. ar) = Ex(pr, ar) / daG(pr,9)A%(a).  (6)

Substituting Eq. 6 into Eq. 2, we obtain the solution of the
electric field

E.0)= (- [ 4600 @) B (0
The approximation of the scattered field is obtained by
substituting Eq. 7 into Eq. 4. With the improved CGFFT

method ([13][21]), the approximate scattered electric field
can be computed using

FUFIGIFIED B}
AR2(1 - F-YFIGIFIAR?})

Esoat =
J(EB) (p) =

B. Reconstruction

A reconstructed image example, shown in figure 1c, is
obtained using the back-propagation as initial solution
followed by the contrast source inversion(CSI Berg[22])
method, which is proposed by Zhang and Liuf13]. A sum-
mary of CSl is given below. First define the contrast source

w(p) as
w(p) = x(P)E.(p), x(p) = A}(p)/KE.
The scattered field can be expressed as

®)

9

)= [ dGo,0x@E@.  (10)
The scattered field is measured in the domain S (outside
D) where x vanishes. Assuming no measurement error, the
measurement data r satisfies

o) =1 [ G ox@B@reS (D
‘We have the state equation and the data equation
wp) = xE™+xGpw,p€ D, (12)
T(P) = Gsw,p€ S,

where Gpw and Ggw are defined as

K [, dpG(p,9)x(9)E=(q), p€D or p€S
(13)

Gp,sw=

The contrast source can be obtained by minimizing the cost
function F(w,X), which is the summation of the error in
the data equation and state equation.

F (w, X) = (Tie lIrs Ils) - Z,_l H"J Gswjl*+
(I, IxEmeiiB) " 55 IXEpe — wi + XGD“JJ'”%’ )
14
The Polak — Ribiére conjugate gradient procedure is used
to update both w and x alternately.

III. MODEL OF UNCERTAIN PERMITTIVITY TISSUE
IMAGE

In this section the uncertainties in the spatial distribu-
tion of the breast permittivity properties are modeled sta-
tistically. First, the random model for the tissue permittiv-
ity image in general is presented. Then the random model
that designates both the normal tissue and the malignant
tumor is presented.

A. Model of tissue permittivity image

We utilize the Markov Random Field( MRF [19]) to
model the spatial uncertainties of the breast permittivity
image. The MRF model implements the idea that the per-
mittivity of spatially nearby tissue is similar. It does not
model the detailed deterministic anatomical structure. The
Markov property captures the local nature of the permittiv-
ity distribution and thereby reduces the uncertainty space.
A Markov Randem Field satisfies[23]

p(zijlen € Q\ {(3,5)}) = p(zsjlzm € Nij),

where Nj; is the neighborhood system of (i,j).

There are several MRF models, such as Auto-Models,
Muiti-Level Logistic Models. The Gaussian MRF
(GMRF,[24][23], one of Auto-Models), is chosen because
it can easily be incorporated into the Baysian approaches.
It can be defined as

p(zijlzn € R\ {(E,5)}) =
- ‘2‘3?;(31'3"‘(“;';' —~TrieN;; A1), (kt) (== pp?
e
V27 ’

where p;; and az are the mean and variance at (i,j). and
Bij), k) are the mtera.ctlon coefficients, which reflect the
local characteristics. The matrix form of B,k can be
expressed as

(15)

(16)

Boo Bor Bo,M
ﬁ - ﬁl (1] Bl 1 ::: ﬁl M , (17)
ﬁMo ﬁMl ﬁM,

where ;1 has been simplified to Bjk—i|,j1—j|, assuming a
stationary and symmetric property. The 8 matrix provides
two pieces of information: one is the neighborhood srea
of (i,j), which is a (2M + 1) x (2M + 1) square. This
implies that the permittivity at (i,j) only depends on the
permittivity in this neighborhood area. Another piece of
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information is the influence of the neighbors on the point
(i,j), as represented by the sign and value of the interaction
coefficients. The B matrix is also an equivalence to the
neighborhood system N in the GMRF. Using conventional
notation, A in this model is composed of one-site and two-
site cliques of M-th order. A clique is a set of points that
are neighbors of one another.

Eq. 16 only defines the conditional distribution of tissue
permittivity. According to the Hammersley-Clifford the-
orem, Eq. 16 is equivalent to the joint distribution of a
Gaussian Field[25], expressed as

1/2 2—u)T Qlz~
pX) = (-Z%Lm/—ze_u)_’g—ﬁ
X(k) = €(4,5),k=({@-1)xN+j1<4j<N,

(18)
where X is a N2 x 1 vector, an re-ordered mapping of per-
mittivity image ¢, defined on an N x N lattice 2. The sam-
ple space of ¢, is RN”. p is the mean vector with size N2 x1.
Q is the inverse covariance matrix with size N? x N2. Q
should be symmetric and positive definite.

To describe the equivalence, the relationship of the pa-
rameters in Eq. 16 and those in Eq. 18 are summarized.

Eq. 18 Eq. 16
#(k) = Hij
k=(GE-1)xN+j

Q=0B1

' L Kl=R=>G-1)*N+j
OELE2) = {§%" b2 =y !

1] y kl GM

B(LE) = {§E® Ekl) o

k1=(i——1)xN+j
R=k-1)xN+1L
(19)
‘When the random field is assumed stationary and isotropic,
II is simplified to 7, and B is a Toeplitz block circulant
matrix.

B. Models of normal and malignant tissue permittivity im-
age

Typically in many studies, malignant and normal tissues
have been modeled as homogeneous. Here, we model inho-
mogeneous tissue characteristics by using means, variances
and interaction coefficients to designate both the normal
tissue and the malignant tumor. The mean values of tu-
mor and background are p; and pjp respectively, which are
scalar variables. The interaction coefficients of tumor and
background are matrix 3; and B, respectively with assumed
correlation length. An algorithm proposed by Rue[26] is
used to fit the interaction coefficients to the Gaussian field
with proposed correlation length.

Transferring the local characteristics to the global char-
acteristics for our Bayesian signal detection approaches,
we have a uniform mean vector pfo = {u; : i € Q}
for Hy condition, and a non-uniform mean vector pi =
(e — po) X V + pHo for Hy condition. V is the tumor mean

function used to describe the position S, the shape and the
area A of the tumor. We consider both sharp and smooth
tumor mean functions. The sharp tumor mean function is
given by
V(r) 1,r € A(S)
V{r) 0,r ¢ A(S)

The smooth tumor mean function is given by

(20)

V() = %(’r - 8)* — %fr(r - 52 +1,rc A(S)
D = nj0.6041,
V(r) = 0,m¢ A(S)

(21)
where S is the tumor position, at the center of A. n is a
constant. Both the sharp and smooth function are assump-
tions since real data of tumor spatial distributions is not
available yet. The data in 5] suggests a sharp mean func-
tion, i.e. permittivity at the tumor boundary that is higher
than that at the tumor center.
From the local characteristics 8 and variance 0%, we de-
rive the inverse covariance matrix Q¥ under Hy condition,

Qo ((35), (k1)) Bo(ij) (k) (K1) € Ny
0, (ki) & Ni;

(22)

Under H; condition, the inverse covariance matrix Q™1,
is derived from both 8, and f:, as well as g2, which is a
function of tumor position S.

QHE((i3), (kD) = Brgsjy,aeny» (35) € A)&((K) € Ny)
Bocigy,oety» (7)) & A)&(Kl € Nyy)
0, (kI) & Ni;

(23)

In summary, for the benign tissue, the Hyp condition, the
distribution of ¢, can be expressed as ¢ ~ N{(ufe, QHo).
For the malignant tissue, the H; condition, the distribution
of ¢, can be expressed as ¢, ~ N(pg"‘ R Qg‘). In the follow-
ing sections, we suppress the superscript H1 and HO if it
does not cause any ambiguity. N denotes a multivariate
real Gaussian distribution.

The possible parameter space is limited in order to have a
definite positive covariance matrix of the Gaussian Markov
Random field[27]. However, we still have flexible choices for
the B’s, o’s and p’s in order to capture the tissue variance
in individuals as well as the background structure variance
across patients. The model is simple so that computational
costs are tractable. Since the Gaussian field is a class of
Gibbs distribution (Gibbs [28][23]), it is possible to extend
the GMRF to a wide range of Gibbs distributions to model
more complex microwave tissue characteristics.

IV. OPTIMAL DETECTION AND LOCALIZATION
FRAMEWORK

According to signal detection theory, the optimal detec-
tor for doubly composite hypotheses is the likelibood ratio
(A) of the data vector X followed by a threshold whose value
is determined by the optimum criterion (T. G. Birdsail).

p(X | H1)

AX) = X TH)

(24)
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The optimal localization processor computes the a posteri-
or% probability of the tumor location, given the data vector
r given the condition Hj. Frequently we use the maximum
a posteriori probability of the tumor position in order to
obtain quantitative localization performance in terms of
the probability of correct localization (PCL).

S= gegq PEX) (25)

Based on signal detection theory, we obtain the optimal
physics(tissue)-based Bayesian image processor using two
kinds of data: the data of the defining tissue permittivity
image as well as the data of the scattered EM field mea-
surements. The Bayesian results are presented in the form
of the likelihood ratio and a posterior: probability images.
‘We also present non-Bayesian approaches for comparisons.
For all these approaches, we assume in this paper that tu-
mor position is a random variable with uniform distribution
on the 2D lattice.

Reconstruction of tissue 5
i|  permittivity image {  inverse algorithm
A) Bayesian Processor for C) Bayesian Processor for
Uncertain Permittivity Image Scattered EM field of
i) Known parameters Uncertain Permitivity Image
. (BPTUPI) (BP_SEUPY)
ii) Estimated parameters D) Low order approximation of
(EBP_UPD) BP_SEUPI
B) Threshold Image Processor (LBP_SEUPI)
(T1P) -

{Fumor detection and localization ] {Tumor detection and localization |

Fig. 2. Signal detection and localization using uncertain tissue per-
mittivity models and EM scattered measurements

Figure 2 shows a flow graph of the various compar-
isons. The left part in figure 2 illustrates the first Bayesian
approach for tumor detection and localization, in which
the reconstructed image is optimally post-processed. The
Bayesian Processor is derived using the mean, variance and
interaction coeficients of the tissue permittivity image, and
its output is called the Bayesian Processor for Uncertain
Permittivity Image(BP_-UPI). It is assumed that the re-
construction is a perfect inverse function of the forward
propagation, i.e. we can use the GMRF model presented
in sectionIIlI for both original and reconstructed permittiv-
ity image.

The performance upper bounds are obtained based on
the BP_UPI algorithm since this optimally process the orig-
inal permittivity image data, with its prescribed uncertain-
ties. I accurate a priori knowledge of the GMRF is not
available, a suboptimal approach could use the estimated

parameters. We call the output for such a case the Esti-
mated Bayesian Processor for Uncertain Permittivity Im-
age, EBP_.UPL. One of the performance lower bounds is
obtained by defining the Threshold Image Processor(TIP)
of the reconstructed tissue permittivity image, which is per-
haps similar to what a human observer might do in looking
at such an image.

A second approach is presented in the right part of Fig-
ure 2. Here, the likelihood ratio and a posteriori prob-
abilities are formed directly from the measurement data,
incorporating the @ priori knowledge of the uncertainties
of the original tissue characteristics as projected through
the nonlinear propagation. The output of this processor
is called the Bayesian Processor for Scattered EM field of
Uncertain Permittivity Image(BP_SEMUPI). The Monte
Carlo Integration is used to make the computation of
BP_SEMUPI tractable. Since the scale of the uncertainty is
very large, the Monte Carlo Integration, although useful,
takes a long time to conmverge. To reduce the computa-
tional complexity, we propose a lower order approximation
of the BP_SEMUPI, called the LBP_.SEMUPL. It is based
on projecting the uncertainties from the measurement do-
main onto a multivariate Gaussian field.

A. Bayesian Processor for Uncertain Permittivity Image
A.1 BP_UPI detector

In the problem of unknown tumor position S, the likeli-
hood ratio is

1 H1,5)p(S
Me) = ZaeaPllFiSi®) (26)
The @ priori pdf of the permittivity image has been mod-
eled
ple- | H1,S) ~ N(ps,Qs) @7
P(ET l Ho) ~ N(#7 Q)’

.The likelihood ratio for the BP_UPI

(t,._.‘.)i Q(“"_l‘)"(‘f_“s)a Qoler—pg)
‘k(E,)::ESEQIQSlE N

A.2 BP_UPI localization processor

The @ posteriori probability of the tissue permittivity,
€, given that the tumer is present is expressed as

| H1,8)P(S
pSler(S | 57‘) = E’:se:,pzeilfh,és?ts;

Using p(er | Hy,S) ~ N(us,Qs) and substituting this in-
formation into Eq. 28 and simplifying, we obtain
p(Sle) o (&= 1) Qe — pt
log(} @s |) — (e — ps)” @s(er — us)-

With some careful simplifications, the computations will
be proportional to the tumor area A.

(29)

(30)

B. Threshold I'mage Processor

The Threshold Image Processor (TIP) mimics a routine
visual examination of the maximum brightness of the ob-
ject image.
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BJ TIP detector
The threshold detector is defined by
A =mar (31)
where ¢, is the permittivity image data.

B.2 TIP localization processor
The threshold localization processor is defined by

§= geq ) (32)

where S is the tumor position.

C. Bayesian Processor for Scattered EM field of Uncertain
Permittivity Image

C.1 BP_.SEMUPI detector

In the measurement domain, The likelihood ratio is de-
fined by

T sen J., p(rlHi.er,S)p(e-| H1,5)p(S)der
T p(rier, HoYp(e-1Ha)der ’

Ar) (33)
where S is the unknown tumor position.

Incorporating the a priori knowledge of the additive
noise, n ~ calN(0,2021), the conditional probability den-
sity function of r given T(e, | C) is

_(r=T(er|ONH (r=T(er|C))
20%

p(r | T(e-), C) = (2702) K¢ 2 (34)

where T is the mapping function from the permittivity im-
age to the measurement data and T'(e,) is the pure mea-
surement signal s.

The complete likelihood ratio is given by

_Sr—T!trnaér—T!q-n
Yseal. € 27 pler | Hy, S)der
x _(r=T(er H (r~T(ey °
T e | Hoyder

Ar)

€r

(35)

Because T'(e,) is a complex nonlinear function, we can not

obtain a closed form for the likelihood ratio. However,

Monte Carlo Integration can be used to compute A(r) in

a computationally efficient manner. This can be expressed
as

Ar) x
_ =Tz IS NF (r=T(eri518;))
20?.

M L
Zj=1,5;€0 it ery; ~pleriS;) €

_(r=T(ery |HoN ¥ (r=T(crg|Hg))
202

EL pmrteriHo) €

(36)

where M is the number of all possible tumor positions and

L is a number large enough to make the Monte Carlo Inte-
gration a good approximation to the likelihood ratio.

C.2 BP_SEMUPI localization processor

In the measurement domain, we derive the a posteriori
probability of the tumor position S given the received mea-
surements r.

p(SIr) = [, p(r/er, S)p(er|S)der 37
Substituting Eq. 34 into Eq. 37, we obtain

- r—T(ey H r~T(c
p(Slr) « [, e ez p(er|Hy, S)de,. (38)

Monte Carlo integration can be used to make the compu-
tation tractable

=T N (=T (er )

L
p(SI) <> e : (39)
k=1

where €,;(S) follows the distribution N (s, @s), given 5. L
is a number large enough to make the Monte Carlo converge
to a good approximation of the a posteriori probability.

D. Lower order approzimation of BP_SEMUPI

Considering the huge time cost for computing BP_SEMUPI,

a lower order distribution is considered to approximate the
true distribution of the measurement data, and the resul-
tant processor is called LBP_.SEMUPL The multivariate
Gaussian model is chosen which demonstrates good per-
formance in the simulations. From a generated large data-
base, we estimate the mean and covariance matrix of the
measurement data under both Hy and H;, which are M
and D for Hy and Mg and Dg for (H;,S). The size of the
Ms and Dgs matrices are the same as the size of the possi-
ble tumor positions. These estimates are then used in the
LBP_SEMUPI processors to make detection and localiza-
tion decisions.

D.1 LBP_SEMUPI detector
Using a multivariate complex Gaussian model, we have

D (T, — -
p(Te'_‘C’))=(|27r_)CKLe (Ten—Mc)? De(T., Mc) (40)

where subscript C represents (Hyp) or (H1,S). K is the num-
ber of sensors.
Using the theorem of Multiplication,

srio)= [ P | T op(Tei)dle: (4D
€r
Substituting Eq. 40 and Eq. 34 into Eq. 41, we obtain

-1 MH M, _rHr__ HD M.
p(r|C) = BellDerl? MEDere 5o ~MEDoMe

@ra?)¥
Dey = ;f;; + Dg,
My = Dgi(3%x + DoMe).

(42)




. The likelihood ratio can be expressed as
- Y seqP(r | H1,S)p(S)
p(r | Ho)

where M is the number of all possible tumor positions.

Substituting Eq. 42 into Eq. 43, with C replaced by
(H:,S) and (Hp) respectively, we obtain the simplified form
of the LBP_SEMUPI detector

Mr) < Yogeq | Ds |l Dsa |71

eMSIHszMsr-MSHDS Ms-MED1M; .

Alr) (43)

(44)

where, Ms]_, Ds]_, M]_ and D]_ follow Eq 42.
When o2 approaches zero, i.e. there is no measurement
error, the expressions are simplified to
p(r | C) = (BGye(r=Me)"Dotr-He),

@nk
A(T) o ZSEQ l DS I';‘ e(r_M)HD(T—M)_(T—MS)HDS("_MS)

(45)

D.2 LBP_SEMUPI localization processor

The localization problem has already been defined in Eq.
37. With the multivariate Gaussian model approximation,
the conditional probability density function of r given H;
and S is defined in Eq. 42, with C replaced by (H:,S). Then
the a posterior: probability expression is given by

He
(s 1 T) o |Ds |D$1I°16M5D51M51—;;{—M5D5M5
p (2wo% )X ’

Dg: = %3; + Ds, (46)

Msi = Dsi(z57 + DsMsy).

When there is no additive noise, the LBP_SEMUPI local-
ization processor is simplified to

p(8| 1) e log(| Ds |) - (r — Ms)? Ds(r — Ms).  (47)

V. SIMULATION RESULTS
A. Bagsic parameters

In the simulations in this paper, the tissue permittivity
image has size 9.2cm x 9.2cm, 529 pixels and the unit area
is 4mmx4mm. For the first three simulation scenarios,
there are 24 sensors evenly spaced outside the object area,
7 at each side and 1.6cm between the neighborhood sensors.
The frequency used for propagation and reconstruction is
1GHz. The last simulation scenario discusses the effect of
different array configurations.

The mean value of normal background tissue was set
to up = 30, which is within the range of values reported
experimentally for real breast permittivity [6]. The mean
value of malignant tumor u, is considered to be a variable
in the first simulation in order to study the effect of the
tumor contrast, and it takes constant value of 40 in the
later simulations. The variance for both the background
and the tumor is 1. The interaction coefficients of tumor

and background are (3; and (3 to fit the Gaussian field with
3 and 30 pixel correlation lengths.

1.0000 —0.1879 0.0191 1 o1

By=| —0.1879 —01724 0.0453 | B, = [ 0.1 0'1}
0.0191  0.0453 0.0007 -

(48)

We also consider the situation where both tumor and nor-
mal tissue have the same interaction coefficient B, in the
first simulation scenario. Two tumor types, one with sharp
boundaries and the other with smooth boundaries mean
are used in the first scenario, as shown in figure 3a 4a.

B. Performance evaluation

To evaluate the detection performance, we use the Re-
ceiver Operating Characteristic (ROC), which is a plot of
the Probability of Detection (Pp) as a function of Proba-
bility of False alarm (Pr). Pp and Pp are obtained from
the probability density functions of the likelihood ratio A
under each hypothesis in that

Pp=['p(A\| Hi)d\ Pp= Jo (M| Ho)dx  (49)
We also use the detectability index, d, sometimes called
the deflection coefficient, to evaluate the detection perfor-
mance. The scalar variable d completely characterizes the
ROC for the case where the underlying probability density
functions are Gaussian. In other cases, d can be estimated
from the ROC curve through Eq. 50 using a data fitting
method and used as an approximation to the ROC’s.
Pp =1 - Gau2edf (Gau2inv(l — Pr) — d) (50)
where Gau2cdf and Gau2inv are normalized Gaussian cu-
mulative density function (CDF) and inverse CDF func-
tions.

To evaluate the localization performance, we use Proba-
bility of Correct Localization (PCL). PCL is the ratio of the
number of correct localization divided by the total number
of trials.

A database of the original and reconstructed tissue per-
mittivity image and measurement data is generated for the
performance evaluation, including 400 realizations with a
tumor at random positions and 400 realizations with no tu-
mor. The test database is independent of a large database
generated to study the statistics of the measurement data.

C. Performance upper bound and tumor characteristics

The detection performances of BP_UPI are shown in fig-
ures 3b 3c, 4b, and 4c. In those figures the detectabil-
ity is plotted as a function of tumor area, tumor con-
trast £H1=EHO sharp or smooth tumor mean function, and
whether or not the interaction coefficients for malignant
and background tissue are the same or different. The com-
putation follows Eq. 28.

The localization performances are shown by PCL curves
in figures 3d, 3e, 4d, and 4e. That computation follows Eq.
30.

The simulation results demonstrate that
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1..The tumor detection and localization performance in-
H1 HO
creases with the tumor contrast #—-#—, which is shown
in all 8 plots.
2. By comparing figure 3 and figure 4, it can be seen that
it is easier to detect and locate the tumor with a sharp
weight function than that with a smooth weight function.
3. By comparing (b) and (c), (d) and (e) in both figures
3 and 4, one can see that capturing different interaction
coefficients for the background and the tumor will help to
improve the detection and localization performance.
4. The performance as a function of tumor area is not a
simple scaling relationship as that of tumor contrast since
it is influenced by the tumor mean function and the in-
teraction coefficients together. When the tumor and the
background have the same interaction coefficients and the
tumor has a smooth shape function, the larger tumor area
may cause stronger similarity between the tumor and the
background such that the detection performance may de-
crease, as shown in 4c,e).
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Fig. 3. Detection and localization performance of BP_UPI using
original tissue permittivity image as a function of tumor contrast,
size, local characteristics, with sharp tumor mean function. a)an
example of sharp tumor mean function, tumor at (11,7), occupy-
ing 25 pixels. b)c)ROC, d)e)PCL curves. Interaction coefficients
for background and tumor: left-differ,right-same. From top to bot-
tom,contrast SHI-EHC: Left-[52.52 1.5 1 0}, Right-[5 2.5 2 1.5 1}

D. Convergence of the covariance matriz estimation

The estimation of the mean and covariance matrix is an
important part for the performance of the computation-
ally simpler EBP_.UPI and LBP_SEMUPI. Since the un-
certainty scale is large, we need a large number of samples
for the estimates to converge.
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Fig. 4. Detection and localization performance of BP.UPI using
original tissue permittivity image as a function of tumor contrast,
size, local characteristics, with smooth tumor mean function. a)an
example of smooth tumor mean function, tumor at (11,17),occupy-
ing 25 pixels. b)c)ROC, d)e)PCL curves. Interaction coefficients
for background and tumor: left-differ,right-same. From top to bot-
tom,contrast LHI—EHO: Left-[5 2.5 2 1.5 1 0], Right-[5 2.5 2 1.5 1]

Two approaches are used to study the convergence of the
estimates,

1. Determine the performance of the processor versus the
number of samples used to form the estimates. The ROC
curve should reach some stable state as the number of the
samples increases.

2. Estimate the mean and covariance matrix of the origi-
nal tissue permittivity image data from the database, and
compare them with the true values. The difference should
be within a small threshold. The number of unknowns is
529 for the tissue permittivity image and 600 for the mea-
surement data. Since they are comparable, we can use the
convergence of estimates using the image data to predict
that using the measurement data.

Figure 5 illustrates the detection performance of the
BP_UPI and LBP_.SEMUPI detectors versus the number
of samples used in the estimations of mean vector and co-
variance matrix. Figure 5a uses the original permittivity
image data and it can be seen that the ROC curves be-
come stable near the perfect upper left corner. The corre-
sponding deflection coefficient converges to around 6.4 af-
ter 1400 samples. It should be noted that 6.4 is the upper
limit of the deflection coefficient that we can estimate using
the data fitting method. Figure 5b uses the scattered EM
measurement data. The ROC curves converge with some
degradation compared with those using the original permit-
tivity image data. The corresponding deflection coefficient
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cquverges to around 3.6 after 1400 samples. The perfor-
mance degradation as sample size decreases also reflects
the effect of non-accurate a priori knowledge of the mean
and covariance matrix on the processor’s performance.
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Fig. 5. The convergence of the detection performance as a function
of the number of samples used to estimate the mean and covariance
matrix. Assume the tumor position unknown. a) ROC curves of
BP_UPI detector using the original tissue permittivity image data b)
ROC curves of LBP_SEMUPI detector using the measurement data

Table I lists the value of the estimated coefficients from
2000 samples and the true values using the original tissue
permittivity image data. There are 35%-50% increases in
the absolute estimation values. However, the performance
curves demonstrate that this level of accuracy in interaction
coefficients is OK for a stable performance.

TABLE 1
THE TRUE AND THE ESTIMATED INTERACTION COEFFICIENTS

Br11 Bo12 Bb13 Booo
ture 1 -0.1879 | 0.0191 | -0.1724
estimate | 1.3557 | -0.2547 | 0.0255 | -0.2337
[ Bbas B | Brizze

ture 0.0453 | 0.00067 1 0.1
estimate | 0.0607 | 0.0007 | 1.3613 | 0.1459

E. Performance of proposed Bayesian approaches
E.1 An example

Figure 6a is an example of a stochastic background per-
mittivity image of the tissue, along with a simulated tumor,
modeled by the GMRF. Figures 6b, ¢, and d are the recon-
structed permittivity images from the perfect measurement
data or from 60dB and 50dB noisy measurement data.

The signal detection approach using the permittivity
data is to compute the a posteriori probability of the tu-
mor location given either the original permittivity image,
or the reconstructed image as data, with Eq. 30. Figure 6e
gives an upper bound on tumor localization by plotting the
a posteriori probability of tumor location using the tissue
data of Figure 6a. Figure 6i gives a sub-optimal perfor-
mance comparison for tumor localization by plotting the
a posteriori probability of tumor location using the tissue
data of Figure 6a and the estimation of the mean and co-
variance matrix. Figures 6f-h shows the a posteriori plot of
tumor location based on post processing the reconstructed
tissue data shown in Figures 6b-d.

Using the measurement data, the a posteriori probability
of tumor location is computed with Eq. 46. Figure 6j-1
shows the a posteriori plot of tumor location base on the
same measurements to get the reconstruction in figures 6b-
d.

Plots 6g-h show that at 60dB and 50dB additive noise
condition, the BP_UPI using the reconstruction tissue data
misses the correct tumor localization, and figures 6k-1 show
that the BP_SEMUPI using the measurement data gets the
correct location of the tumor with high probability. This
is a specific example where the BP_SEMUPI works better.
In the following sections, it is demonstrated statistically
that the processors based directly on the likelihood ratio
and a posteriori probabilities of the measurement data have
better performance.

Fig. 6. a) Original tissue permittivity image; b)-d) Reconstructed
permittivity from the measurement data b)without additive noise
c)with additive noise, SNR=60dB d)with additive noise, SNR=50dB;
e)-h) the a posteriori probability of the tumor position given the per-
mittivity image data and H1 condition-p(S | er, H1), data er comes
from a)-d); i)the p(S | r, H1) computed using the estimation of the
mean and covariance matrix and the data from a); j)-1) the a poste-
riori probability of the tumor position given the measurement data
and H1 condition-p(S | r, H1)

E.2 Detection performance

Figure 7 illustrates detection performance comparisons
assuming no additive noise. In figure 7 the ROC of the
threshold detector provides a performance lower bound.
TIP mimics the way a routine visual examination of the
image might be done. Although it is not sophisticated,
it’s ROC reflects the problem of high positive predictive
Value(PPV) of conventional mammography. Using the re-
constructed permittivity image data, the BP_UPI detector
is much better than the TIP detector, especially when the
probability of false alarm is low, because the BP.UPI uti-




°

lizes the a priori knowledge of the tissue background across
© patients and the a prior knowledge of the different charac-
teristics of the normal and malignant tissues to improve
the detection performance. With a shared large database,
accurate a prior knowledge will be available. Even with
uncertain @ priori knowledge, as shown in figure 5, the
performance is still satisfactory compared with that of the
threshold method.

Figure 7 also shows that the BP_SEMUPI detector us-
ing the measurement data is better than BP.UPI detector
using the reconstructed permittivity data, yet worse than
BP_UPI detector using the original permittivity data. It
should be noted that in reality, we can not get the original
tissue permittivity image directly but the scattered EM
measurements. However, it provides an upper bound for
performance evaluations. It is better than the BP_SEMUPI
because the forward EM field maps the variables from the
original permittivity domain to the measurement domain,
which reduces the random variable space and decreases the
detectability. Proofs in the Appendix support this explana-
tion. In addition, it is because of the multivariate Gaussian
approximation used to compute Eq. 37. The LBP_SEMUPI
is better than the BP_UPI using reconstructed permittivity
data because of the inherent algorithm limitations in the
reconstruction procedure.

Fig. 7. Detection performance of BP_UPI using original tissue data,
BP_UPI using reconstructed permittivity image data, TIP using re-
constructed permittivity image data and BP.SEMUPI using mea-
surement data. No additive noise presents at sensors, tumor position
unknown
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Fig. 8. Detection performance comparisons. Tumor position un-

known. SNR=(Inf, 60,50]dB a) BP_UPI and TIP detectors using the
reconstructed tissue permittivity image b) BP_UPI detector using the
reconstructed tissue permittivity image and LBP_SEMUPI detector
using the measurement data

Figure 8 displays the performance of the detectors when

10

noise is present. Additive noise degrades the performance
of all three detectors. Figure 8a shows that for the three
SNR conditions, the BP_UPI detector is better than the
TIP detector. The ROC curve at 60dB SNR condition
is so close to the ROC curve for a very large SNR that
we consider 60dB as a threshold for the BP_UPI detector
using reconstruction data. Figure 8b) shows that for the
three SNR conditions, the LBP_SEMUPI detector using
the measurement data is better than the BP_UPI detector
using the reconstructed tissue permittivity image data.

E.3 Localization performance

Figure 9 displays the localization performance of the
LBP_SEMUPI using the measurement data, and the
BP_UPI and the TIP using the reconstructed tissue per-
mittivity data. The localization performance is shown by
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Fig. 9. Localization performance: solid line, LBP . SEMUPI using
the measurement data; dotted line, BP_UPI using the reconstructed
tissue permittivity data; dashed line, TIP using the reconstructed
tissue permittivity data

the probability of correct localization (PCL) curves. The
localization is correct if the picked position is located within
the test window. If it is required that the picked position
is exactly the same as the real position to be true, the win-
dow diameter is zero. For the other values of the window
diameter:1,2,2.8284, the window sizes are 9,13,25. Figure 9
demonstrates that at 50dB or 60dB SNR, both the BP_UPI
and the LBP_SEMUPI have performance better than 0.9
PCL. They are much better than the threshold method
for all the tested SNR conditions. The LBP_SEMUPI lo-
calization using the measurement data is the best of the
three. The results of the detection and localization per-
formances show that the LBP_SEMUPI, which processes
the measurement data directly, provides a potential way to
help a doctor make a better diagnosis.

F. Performance and Array configurations

This simulation scenario studies the detection perfor-
mance as a function of the sensor array configuration. Fig-




T

uze 10 displays the deflection coefficient indexed by 2D
source positions, given the possible tumor position is known
to the detectors.

' Fig. 10. Deflection coefficients as a function of the tumor positions,

assume tumor position known for the detector. a) BP.UPI using orig-
inal permittivity data b) EBP_UPI using original permittivity data
c)-f) LBP_SEMUPI using measurement data. c)Configuration 1:1:24,
24 sensors work d) Configuration 1:2:24, 12 sensors work e) Configu-
ration 2:2:24, 12 sensor work f) Configuration 1:1:12, 12 sensors work

Figure 10a provides the upper bound by computing the
deflection coefficient of the BP_UPI using the original per-
mittivity data. Figure 10b is a sub-optimal comparison
by computing the deflection coefficient of EBP.UPI using
the original permittivity data. The degradation in figure
10b compared with that in figure 10a reflects the effect of
the estimation procedure, which is independent of the tu-
mor positions. Figures 10¢- 10f is the performance of the
LBP_SEMUPI detector for four different array configura-
tions. The four plots show a strong relationship between
the detection performance and the distance of the tumor
to the sensors. The deeper the tumor is located, the more
difficult it is to detect.

Fig. 11. Detection performance using the measurement data and
the reconstructed permittivity image data. Assume tumor position
unknown. Comparison of different array configurations.

Figure 11 displays the ROC detection performance when
the possible tumor position is unknown. By comparing the
ROC curves of the first configurations with the three other
configurations in figure 11, one sees that the performance
degrades due to the limited number of sensors. The ratio
of the data length to the uncertainty variable number is
600:529 for the first configuration and 156:529 for three
other configurations. On the other hand, if we lower the
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requirement on the processor’s performance, we can reduce
the necessary number of sensors. The plots also show how
the configuration of sensors will influence the processor’s
performance. For the case where the tumor position follows
a uniform e priori distribution, it appears that the more
evenly spaced the sensors, the better the performance. But
if the a priori tumor position is not a uniform distribution,
we could improve the performance by having more sensors
close to the possible tumor positions.

VI. CONCLUSION

This paper considers two Bayesian approaches for breast
tumor diagnosis, one post processes the reconstructed tis-
sue permittivity image data. The other incorporates the
scattered EM measurement data into an optimal likelihood
ratio detector. The breast permittivity cross section propa-
gation medium is modeled by a Gaussian Markov Random
Field. The simulations compare these two approaches. The
simulation results also provide an upper bound on early de-
tection performance and localization of malignant tissue,
as a function of uncertain and variable tissue permittiv-
ity characteristics, tumor contrast, tumor size, and local
characteristics and shape. The effectiveness of using the
multivariate Gaussian distribution approximation for the
measurement data to reduce the computational complexity
was also illustrated. Finally, the effect of array configura-
tions on detection performance was illustrated.
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APPENDIX: DEFLECTION COEFFICIENT INEQUALITIES

For linear projection and reconstruction medical system,
the performance of the optimal detectors to distinguish the
tumor of some fixed position from the normal tissue back-
ground can be precisely represented by the deflection coeffi-
cient if multivariate normal distributions are used to model
the object image and the measurement error. In this part,
we derive the deflection coefficient based on these assump-
tions using the original, measurement and reconstruction
data, and prove relationships with a matrix inequality the-
orem. Furthermore, the effects of the forward propagation,
the reconstruction procedure and the measurement error
on the detection performance are clarified.

Theorem 1: uTC~'u > uTBT(BCBT) 'Bu, if C is a
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NxN real symmetric positive definite matrix, u is a Nx1

vector, B is a MxN matrix and BCBT is non singular.
Proof: We have the matrix version of the well-known

Cauchy-Schwarz inequality[29]

XTx> XTYy(YTy)y 'y7TXx, (51)
where, X is a nxm matrix, Y is a nxq matrix, and YTY
is nonsingular. >; is the Loewner ordering relationship.

As C is a real symmetric positive definite matrix, we
have C = LLT and C~! = L-TL-!, where L is a NxN
simple matrix. Substitute X = L~T and Y = LTB7 into
Eq. 51, we get C~3>;BT(BCBT)"'B, ie. uTC™lu >
uTBT(BCBT)~!Bu. n

Deflection Coefficient after linear transformation

Any linear transformation can be represented by a ma-
trix A. Assume x is 2 Nx1 vector of multivariate Gaussian
distribution, y is a Mx 1 vector transformed from x by MxN
matrix A

y = Az. (52)
Assume the binary hypotheses for x are
Hl: z~N(6,0) (53)

HO: =z~ N(6,C),

where 6; is the Nx 1 mean vector; C is the NxN covariance
matrix, which is real, symmetric and positive definite.
From Eq. 52 and Eq. 53, we have

E{y | H1} = A6,
E{y | HO} = A6,
COV{y} = ACAT.

(54)

We derive the deflection coefficient no matter whether the
COV(y) be singular or non-singular. Let R4 = rank(A4).
There are R4 independent rows in A. We assume 4; is
composed of R4 independent rows of A, and Ap is com-
posed of the rest of the rows of A. A2 can be represent by
a linear combination of rows in Aj, i.e. A2 = GA;. Then,

we have 4
- Y} _ 1
v.= i: Y2 ] [ Az ]x (55)
n = Az
yo = Asx=GAz=Gy.

From Eq. 55, we get py(y) = 8(y2 — Gy1)py, (¥1)- Since y»
is determined by y;, which is independent of the hypothe-
ses, we find that the likelihood ratio of y is the same as
the likelihood of y;, and so is the deflection coefficient. It
can be proved that COV (y;1) = A1CAT is a real symmet-
ric positive definite matrix. Then the post-transformation
defiection coefficient becomes

d®> = AGT AT (A,CAT) 1 A100. (56
1

Deflection coefficients using three kinds of data

1. Original image data
The binary hypotheses have been defined in Eq. 53, where
H1 represents the normal tissue background with a tumor




<

present, HO represents the normal tissue background only,
and x in this problem is the permittivity data e, used for
detection. The deflection coefficient with the original ob-
ject data becomes

&2

2 AGTC 1A
A6T

61 — 6.

(67)

2. Measurement data

If we consider the measurement error, and use the additive
independent Gaussian vector to represent it, the measure-
ment data r can be represented by

r =

€r
A +n=[ A IM][n ]
n o~ N(O: IMalrzz)v
where A is a MxN matrix, Ips is a MxM Identity matrix,
¢ is an Nx1 vector, n is a Mx1 vector. Using Eq. 55,56,
with A replaced by [A In], x replaced by [ - ] and y

replaced by r, we obtain the deflection coefficient using the
measurement data

2 = ABTAT(Ach{ + IMlo‘ﬁ)_lAle, (59)

where, [A; Iy, ] are composed of R4 independent rows of
matrix [A Im)l, Ra = rank([A IM]).

3. Reconstructed image data

After reconstruction, the estimated object data & can be
represented by

(58)

~ _ T1 - - B
& = BT—-B[rz]—Dh, D—[BG] (60)

where, 71,712 correspond to 41,y2 in Eq. 55. G is a ma-
trix that satisfies 7 = Gr;. Using Eq. [55,56] again, with
A replaced by D, x replaced by r; and y replaced by &,
we obtain the deflection coefficient of the optimal detector
using reconstruction data

&2 = A6T(B1A;)T(B14:1C(B1A)T
+B13{0ﬁ)—131A1A9,
where B; is composed of Rp independent rows of D, Rp =
rank(D).
Inequality relationships of deflection coefficients
We have d2 = A§TC~A§. Assume o2 = 0, we have
a2, = A9T AT(A,CAT)~1 A1 A6. Apply theorem 1, we get
d2 > d2,,. It can be proved that dZ, is inversely propor-
tional to 02, or d2, < d2, , so we get
2>, (62)
Let A® = A, A0 and E = A;CAT +In, 02, and substitute
them into Eq. 59 and Eq. 61, we have
d2, ABTE-1AE
a2 AST(By)T(B,EBT)"1B,A6.
Since E is real symmetric positive definite, BEB7T is non
singular, apply theorem 1, we get

dZ, > d2.

(61)

(63)

ihon

(64)
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Two special cases

1. Case 1: Assume the measurement error is not present,
and the only uncertainties are the normal and malignant
tissue properties.

Let 02 = 0, from Eq. 59 and Eq. 61, we have

a2

& AOT AT(A,CAT)-1 A, A9

AGT(B1A1)T(BlAlc(BlA1)T)_lB]_A1Ae.

(65)
The inequality relationships can be inherited from Eq. 64
and Eq. 62. We have

E>d > (66)
2. Case 2: Assume signal ¢, under binary hypotheses are
determined, in stead of random. The uncertainty in this
problem is the additive measurement noise only.

Let C be Zero matrix and let A replace A;, from Eq. 59
and Eq. 61, we have

@2, = ASTAB8/c?
& = AOTBI(BBI)'BiAG/at  (67)
AO = AA6.

The inequality relationship can be inherited from Eq. 64,
and we have

i, > d2. (68)

The forms of the deflection coefficients and their inequality
relationships for the two special cases can also be derived
directly from the corresponding special binary hypotheses.
Discussion

The form of the deflection coefficients for special case 1,
and their inequality relationships demonstrate that it is the
reduction of the random variable space during the forward
and reconstruction procedures that causes the decrease of
the detection performance. The detection performance of
the optimal detector using the reconstruction data can not
be better than that using the measurement data, even with-
out any measurement noise.

The form of the deflection coefficients for special case 2
demonstrates that d,, and d, are inversely proportional to
o2, which reflects the direct effect of the measurement noise
on the detection performance. In addition, the forms and
their inequality relationships also demonstrate that the in-
adequate rank of the reconstruction matrix B, which is less
than the length the measurement, data, will reduce the ran-
dom variable space in dealing with the uncertainty of the
measurement noise, and cause the decrease of the detec-
tion performance at the reconstruction domain. The effect
of the measurement error on the detection performance has
been negatively strengthened by the reconstruction proce-
dure. This conclusion agrees well with the simulation result
in [16].

The more general form of dy,, and d, in Eq. 59 and Eq.
61 clarify the effects of the combination of the projection
and reconstruction procedures as well as the measurement
noise. The inequalities in Equations 64 and 62 illustrate




othe degradation of the detection performance during the
processing procedures. This general conclusion is consis-
tent with our simulation results for the performance of the
microwave imaging system.

Clarifying the aspects that causes the deégradation of the
detection performance could help us design a better sys-
tem. It suggests that good sampling of the measurement
data, which maximizes the random variable space in deal-
ing with the uncertainties(i.e. increase the rank of A), will
improve the detection performance. If the measurement er-
ror cannot be ignored, the length of the measurement data
should be limited (i.e. decrease the difference in rank of B
and Ips) to reduce the degradation of post-processing the
reconstructed image. It also suggests that making optimal
decisions before reconstruction will improve the detection
performance.
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APPENDIX 6

ADDENDUM to Final Report for Award Number DAMD17-01-1-0513
Principal Investigator: Loren W. Nolte, PhD

Contract Organization: Duke University, Durham, North Carolina 27708-0291
Date: December 17, 2003

1.(a). In the final report the following items should be added to the “Reportable
Outcomes”.

Liewei Sha, Loren W. Nolte, Zhong Qing Zhang, and Qing Huo Liu, “Incorporating
statistical models of tissue permittivity into an optimal signal detection theory framework
for the detection of breast cancer at microwave frequencies,” submitted to the IEEE
Transactions on Medical Imaging, December, 2003. (Copy of submitted full paper
attached. Note: Funding provided by the USAMRMC contract has been acknowledged
in this full paper.)

This paper should also be added to the “Bibliography of all publications” of the final
report as item 5.

(b).Liewei Sha, a PhD student supported in part by this award, expects to receive her PhD
in Spring, 2004.

(c). Liewei Sha received an offer of employment from GE Medical Systems in
Milwaukee, Wisconsin, during the second year of this award, based on experience
supported by this award.




2. Research highlights completed in the second year.

During the second year a more in depth treatment of the signal detection theory approach
was developed, a broader class of possible tumor boundaries were considered, lower
order approximations were developed for the receiver operating characteristic (ROC) and
the probability of correct localization (PCL) to decrease computational complexity,
convergence issues of Monte Carlo approaches were quantified, deflection coefficient
(delectability index) inequalities were developed to gain insight into tumor detection
performance tradeoffs, and the impact of sensor configuration on tumor detection
performance was determined using the ROC.

More specific results regarding these topics are contained in the recently submitted full
paper given above, referred to in this paragraph as Ref. 5, i.e. Liewei Sha, Loren W.
Nolte, Zhong Qing Zhang, and Qing Huo Liu, “Incorporating statistical models of tissue
permittivity into an optimal signal detection theory framework for the detection of breast
cancer at microwave frequencies,” submitted to the IEEE Transactions on Medical
Imaging, December, 2003. A more in depth development of the signal detection theory
approach and how the measurements and models of breast tissue uncertainty are
incorporated is presented in Ref. 5, section II A, B and section III. Incorporating tumors
with different possible boundaries was incorporated into the algorithms. In particular, the
ROC and the PCL performance measures were compared for tumors with sharp
boundaries versus smooth (Ref. 5, section V). Lower order approximations were
developed for the Bayesian processors that incorporate the uncertain permittivity for both
detection and localization. Quantitative tumor detection and localization performance
measures, the ROC and the PCL, were obtained for these lower order approximations, the
EPB_UPI and LPB_SEUPL That work enables one to greatly reduce the computational
time for the ROC’s and PCL performance curves for both tumor detection and
localization (Ref. 5, section IV). Since Monte Carlo integration is necessary in both the
Bayesian algorithms as well as in the lower order approximations, the convergence of
these algorithms was investigated in order that no more iterations than are necessary are
used to get good approximate results of tumor detection performance (Ref. 5, section V).
Since most of the quantitative detection performance results are obtained using Monte
Carlo methods, deflection coefficient (delectability index) inequalities were developed to
gain analytical insight into tumor detection performance tradeoffs (Ref. 5, Appendix).
The impact of the sensor array configuration on tumor detection performance as a
function of relative location of a tumor to the array sensors was quantified (Ref'5,
section F).




3. Please add the following references to the final report. (A more comprehensive list of
references is contained in Reference 5 of the modified final report “Bibliography of all
publications”)

References (add)

W. T. Joines, Y Zhang, C Li, and R. 1. Jirtle, "The measured electrical properties of
normal and malignant human tissues from 50 to 900 MHz, Med. Phys. J., Vol. 21, No. 4,
547-550, April 1994,

D. J. Jalihal and L. W. Nolte, “Signal detection theory and reconstruction algorithms -
performance for images in noise”, IEEE Transactions on Biomedical Engineering, vol.
41, No. 5, pp. 501-504, May, 1994.

J. A. Shorey and L. W. Nolte, “Wideband optimal a posteriori probability source
localization in an uncertain shallow ocean environment”, Journal of the Acoustical
Society of America, Vol. 103, No.1, pp. 355-361, January, 1998.

Rasimas, Tantum, and Nolte, "Bayesian signal detection for multiple aspect angles with
an uncertain look angle, Proc.of SPIE: Detection and Remediation Technologies for
Mines and Minelike Targets, Orlando, FL, April 1999.

A. M. Richardson and L. W. Nolte, “A posteriori probability source localization in an
uncertain sound speed, deep ocean environment”, Journal of the Acoustical Society of
America, Vol. 89, No. 5, pp. 2280-2284, May, 1991.




4. Note: Although the first annual report period covered the period August 1, 2001 —
July 31, 2002, the following item presented during the second year, August 1, 2002 —
August 30, 2003 of the no-cost project extension was listed under the reportable
outcomes, references and appendices sections in the first annual report.

Liewei Sha and Loren W. Nolte, “Computer-aided algorithms for breast tumor diagnosis
using microwave diffraction measurements”, Era of Hope 2002 Department of Defense
Breast Cancer Research Meeting, Orlando, Florida, September 25-28, 2002.”

In the first annual report, this should have been listed as “a poster to be presented” and
the “Copy of the paper by Liewei Sha and Loren Nolte”, item 3 in the appendix of the
first year report should have read “Copy of the poster ...”.




